Self-Healable and Self-Powered Graphene-based Polymer Composites for Strain Sensors

Barış Şimşek

Jasper Ruhkoph, Ulrich Plachetka, Max Christian Lemme Çankırı Karatekin University, Department of Chemical Engineering, 18100, Çankırı, Turkey RWTH Aachen University, Chair of Electronic Devices, Otto-Blumenthal-Strasse 2, Aachen, Germany baris.simsek@eld.rwth-aachen.de

Abstract

Smart electronic devices have become very attractive in recent years with the rapid development of science and technology and graphene-polymer-based strain sensors come to the forefront due to their significant advantages over semiconductors and metals such as high flexibility, low-cost fabrication [1]. In addition, graphene-polymer-based strain sensors are preferred regarding to their self-healing, self-powered capabilities [2]. Noncovalent interactions such as hydrogen bonding, electrostatic, hydrophobic and host-guest interaction plays a key role in imparting these properties to strain sensors [3]. In this study, the effect of intermolecular interactions on self-healing properties was evaluated.

References

- [1] Xiao-Lu Xu, Shun-Xin Li, Ying Yang, Xiang-Chao Sun, Hong Xia, High-performance strain sensor for detection of human motion and subtle strain by facile fabrication, Measurement, 189 (2022)110658.
- [2] Yang Lu, Manik Chandra Biswas, Zhanhu Guo, Ju-Won Jeon, Evan K. Wujcik, Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors, Biosensors and Bioelectronics, 123 (2019) 167-177.
- [3] Lei Zhai, Ameya Narkar, Kollbe Ahn, Self-healing polymers with nanomaterials and nanostructures, Nano Today 30 (2020) 100826.

Figures

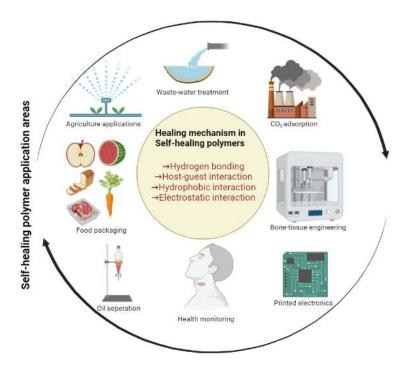


Figure 1: Noncovalent interaction in self-healing polymers and their application areas