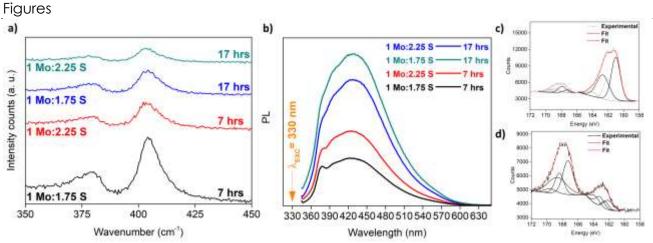
Few-layered and multi-layered MoS₂ produced by hydrothermal route under influence of different reaction times and Mo:S ratios


Rodrigo Schneider^{1,2}

Murilo H. M. Facure^{1,2}, Daniel S. Correa² Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil Embrapa Instrumentação, São Carlos, São Paulo, Brazil rodrigos@estudante.ufscar.br

Few-layered and multi-layered MoS₂ fabricated by top-down and bottom-up routes have been recently explored for dye [1] and metal adsorption [2]. Here, we explore the synthesis and characterization of MoS₂ obtained by a hydrothermal route and investigate the influence of reaction time and Mo:S precursors ratios. Our results demonstrate differences between few layers (supernatant) and multi-layered (precipitate) MoS₂ obtained by a centrifugation step (10 min/8000 rpm/5 °C). Raman analysis shows the characteristic peaks of MoS₂ at 380 cm⁻¹ (E₂^g) and 404 cm⁻¹ (A_{1g}), without the appearance of longitudinal acoustic mode peaks. We observed that by increasing the reaction time from 7 hours to 17 hours the photoluminescence intensity of MoS₂ few-layered upon excitation at 330 nm also increases. The systematic analysis of XPS allowed us to verify that the reaction time augment leads to a shift in the position of characteristics Molybdenum (Mo3d) 3/2 and 5/2 peaks, both to lower energies and indicating an increment of 1T phase content [3,4]. Additionally, through XPS results we observed the presence of well-defined splitting in the signal of Sulphur (S2p) in fewlayered and multi-layered MoS₂ that can be associated with edge contribution [5] and surface plasmons [6], with a higher contribution presented in the few-layered product than in the multi-layered products. The optimization of hydrothermal parameters - e.g. temperature and Mo:S ratio – can be a suitable strategy to help tailoring the MoS_2 properties such as PL, 1T/2H phase and edge contribution, which in turn can enhance the material's performance for application in environmental remediation or other applications.

References

- [1] Luiza A. Mercante et al., New Journal of Chemistry, 44 (2020) 13030.
- [2] Rodrigo Schneider et. al., ACS Applied Nano Materials, 4 (2021) 4881
- [3] Lianfu Jianga et al. Materials Research Letters, 3:4 (2015) 177.
- [4] Adriano Ambrosi et al., Chemical Communications, 51 (2015) 8450.
- [5] Claudia Backes et al., Nature Communications, 5 (2014) 4576.
- [6] D. Ganta, S. Sinha, Richard T. Haasch, Surface Science Spectra, 1 (2014) 19

Figure 1: Physical chemical characterizations of MoS₂ synthesized by hydrothermal route at different Mo:S ratios and temperature a) Raman of multi-layered MoS₂, b) Photoluminescence spectra of few-layered MoS₂ and XPS spectra for c) multi-layered and d) few-layered MoS₂.

Graphene2022

Aachen (Germany)