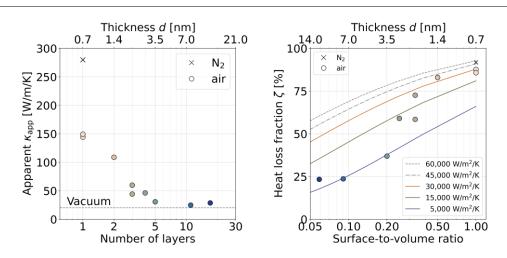
Raman thermometry reveals efficient heat dissipation to air molecules in ultimately thin free-standing MoSe₂ crystals

D. Saleta Reig¹

S. Varghese¹, R. Farris¹, A. Block¹, J. D. Mehew¹, O. Hellman², P. Wozniak³, M. Sledzinska¹, A. El Sachat¹, E. Chávez-Ángel¹, S. O. Valenzuela^{1,4}, N. F. van Hulst^{3,4}, P. Ordejón¹, Z. Zanolli⁵, C. M. Sotomayor Torres^{1,4}, M. J. Verstraete⁶, and K.-J. Tielrooij^{1,*}


¹Catalan Institute of Nanoscience and Nanotechnology (ICN2), BIST and CSIC, Campus UAB, 08193 Bellaterra (Barcelona), Spain. ²Dept of Molecular Chemistry and Materials Science. Weizmann Institute of Science, Rehovoth 76100, Israel. ³ICFO—Institut de Ciències Fotòniques, Mediterranean Technology Park, Castelldefels (Barcelona) 08860, Spain. ⁴ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain. ⁵Chemistry Department and ETSF, Debye Institute for Nanomaterials Science, Utrecht University, the Netherlands. ⁶Nanomat, Q-Mat, CESAM, and European Theoretical Spectroscopy Facility, Université de Liège, B-4000 Liège, Belgium. david.saleta@icn2.cat

The prospect of heat management via 2D-material based nanodevices is rapidly gaining attention within the scientific community. In this regard, the ability to tune thermal transport properties of layered materials is of utmost relevance [1]. Here, we study the effects of flake thickness (in the range of 0.7–50 nm) and environment (vacuum, air and N₂) on the in-plane thermal conductivity (κ) of large, free-standing MoSe₂ single-crystals using Raman thermometry [2,3]. In vacuum, our results suggest a weak influence of flake thickness on κ (~20–40 W m⁻¹ K⁻¹) given by a unique in-plane cooling channel from the hot spot towards the heat sink. Interestingly, the results in air and N₂ environments suggest enhancement heat dissipation capabilities for the thinnest flakes. Owing to the large surface-to-volume ratio, the presence of an out-of-plane cooling channel from MoSe₂ to the environmental molecules results in an apparent thermal conductivity (κ_{app}) increase by an order of magnitude (~200 W m⁻¹ K⁻¹) for monolayer flakes. We estimate the out-of-plane heat transfer coefficient to adjacent gas molecules as large as 60,000 W m⁻² K⁻¹. These results are crucial for the design of (sub-)nanometer-thick TMD-based devices with engineered thermal properties that can be comparable, or even better, to those of nanometer-thick Si-based devices.

References

- [1] Y. Zhao, et. al. Advanced Functional Materials. 30, 1903929 (2020)
- [2] S. Varghese, et. al. Journal of Physics: Materials. 4, 046001 (2021)
- [3] D. Saleta Reig, et. al. Advanced Materials. 2108352, (2022)

Figures

Figure 1: Apparent thermal conductivity of MoSe₂ in vacuum, air and N₂ environments (*left*) and heat loss fraction (in air and N₂) as a function of flake thickness (*right*).

Graphene2022