Zero-Bias Power Detector Circuits based on MoS₂ Field Effect Transistors on Wafer-Scale Flexible Substrates

Eros Reato^{1,2}

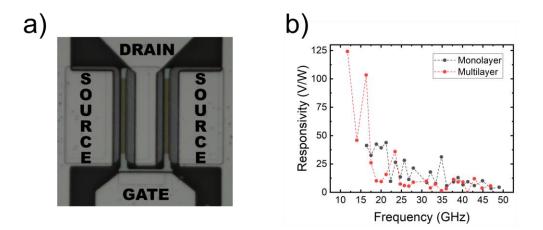
Paula Palacios³, Burkay Uzlu^{1,2}, Mohamed Saeed³, Annika Grundmann⁴, Zhenyu Wang⁵, Daniel S. Schneider^{1,2}, Zhenxing Wang¹, Michael Heuken⁶, Holger Kalisch⁴, Andrei Vescan⁴, Alexandra Radenovic⁵, Andras Kis⁵, Daniel Neumaier⁷, Renato Negra³ and Max C. Lemme^{1,2}

¹AMO GmbH; ²Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Strasse 25, 52074 Aachen, Germany

³Chair of High Frequency Electronics, RWTH Aachen University, Aachen, Germany
⁴Compound Semiconductor Technology, RWTH Aachen University, Aachen, Germany
⁵School of Engineering, EPFL, Lausanne, Switzerland
⁶AIXTRON SE, Herzogenrath, Germany
⁷Bergische Universität Wuppertal, Wuppertal, Germany
reato@amo.de

This contribution discusses the design, fabrication, and characterization of wafer-scale, zerobias power detectors based on two-dimensional MoS₂ field effect transistors (FETs) on a flexible Polyamide (PI) substrate [1]. The performance of two CVD-MoS₂ samples (monolayer and multilayer), grown with different processes, is analyzed and compared starting from material growth, through device fabrication and characterization steps to the circuit level. By relying on the nonlinearity of the channel conductivity, the operation frequency of the circuit is between 12 and 18 GHz, with a demonstrated voltage responsivity of 45 V/W at 18 GHz for the monolayer MoS₂ and 104 V/W at 16 GHz for the multilayer. The measured dynamic range exceeds 30 dB, outperforming other semiconductor technologies like CMOS circuits [2] and GaAs Schottky diodes [3]. In addition, since the circuits operate without DC bias, they also have zero DC power consumption. These results make them the best performing power detectors fabricated on flexible substrate reported to date. The concept could be extended to future generations of flexible 2D microwave circuits [4].

References


[1] E. Reato, P. Palacios et al., Advanced Materials, Jan. 2022, Accepted Article, p. 2108469, doi: 10.1002/adma.202108469.

[2] K. Kim and Y. Kwon, *IEEE Microwave and Wireless Components Letters*, Sep. 2013, vol. 23, no. 9, pp. 498–500, doi: 10.1109/LMWC.2013.2274994.

[3] M. Hrobak et al., 2013 European Microwave Conference, Oct. 2013, pp. 179–182. doi: 10.23919/EuMC.2013.6686620.

[4] M. Saeed et al., Advanced Materials, Dec. 2021, Accepted Article, p. 2108473, doi: 10.1002/adma.202108473.

Figure 1: a) Optical micrograph of one of the fabricated MoS_2 devices, the channel dimensions are 5 x 60 μ m. b) Comparison in responsivity of the two power detector circuits.