Agata Piacentini^{1,2}

Damiano Marian³, Daniel S. Schneider^{1,2}, Enrique González Marín⁴, Zhenyu Wang⁵, Martin Otto¹, Bárbara Canto¹, Aleksandra Radenovic⁵, Andras Kis⁵, Gianluca Fiori³, Max C. Lemme^{1,2}, and Daniel Neumaier^{1,6}

¹AMO GmbH, Otto-Blumenthal-Str. 25, 52074 Aachen, Germany

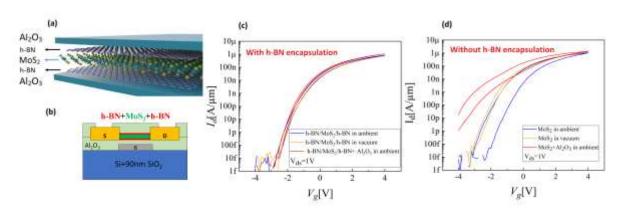
² RWTH Aachen University, Otto-Blumenthal-Straße 2, 52074 Aachen, Germany

³ Università di Pisa, Via Girolamo Caruso 16, 56122 Pisa, Italy

⁴ University of Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain

⁵ École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland

⁶ Bergische Universität Wuppertal, Lise-Meitner-Straße 13, 42119 Wuppertal, Germany


piacentini@amo.de

Two-dimensional materials have attracted massive attention especially for their potential as an alternative in ultra-scaled FET and for flexible electronic applications. Molybdenum disulfide (MoS₂) is the most widely studied transition metal dichalcogenides because of its high carrier mobility compared to ultra-thin silicon FETs and its specific optoelectronic properties, but the electrical performance is strongly affected by the environment and dielectric interfaces, often leading to large hysteresis in MoS₂-based devices [1]. Encapsulation layer like aluminium oxide (Al₂O₃) is widely used in (opto)-electronics. At the same time, it leads to detrimental charge transfer n-doping to MoS₂ [2]. Here, we report a scalable encapsulation approach for MoS₂ FETs where hexagonal boron nitride (h-BN) monolayers are employed as a barrier layer in-between each of the Al₂O₃ and MoS₂ interfaces (Fig. 1a and b). These devices exhibit a significant reduction of charge transfer when compared to structures without h-BN (Fig. 1c and d). This has been confirmed by abinitio Density Functional Theory calculations. In addition, the devices with h-BN layers show very low hysteresis even under ambient operating conditions [3].

References

- [1] Late, Dattatray J., et al. ACS nano 6.6 (2012): 5635-5641.
- [2] Na, Junhong, et al. Nanoscale 6.1 (2014): 433-441.
- [3] Piacentini, Agata et al. Unpublished manuscript (2022).

Figure 1: (a) Schematic of the channel material stack and (b) cross sections of the used FET structure. Electrical characterisation of a FET (c) with h-BN encapsulation and (d) without h-BN encapsulation in different conditions.

Acknowledgment: EU (881603, 829035, 863258), DFG (LE 2440/7-1 and LE 2440/8-1) BMBF (16ES1134)

Graphene2022