Transition metal dichalcogenide alloys as a new class of materials

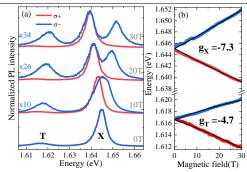
K. Olkowska-Pucko¹,

E. Blundo², N. Zawadzka¹,T. Woźniak³, S. Cianci², M. Felici², D. Vaclackova⁴, P. Kapuściński⁴, D. Jana⁴, K. Watanabe⁵, T. Taniguchi⁵, C. Faugeras⁴, M. Potemski⁴, A. Babiński¹, A. Polimeni², and M. R. Molas¹ Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland ²Physics Department, Sapienza University of Rome, Rome, Italy

³ Wrocław University of Science and Technology, Wrocław, Poland

⁴Laboratoire National des Champs Magnétiques Intenses, CNRS, Grenoble, France

⁵National Institute for Materials Science, Tsukuba, Japan


kolkowska@fuw.edu.pl

Alloys of semiconducting transition metal dichalcogenides have emerged as materials with tunable electronic structures and valley polarizations [1]. It is therefore crucial to uncover their basic optical properties. To this end we investigate the low-temperature magnetophotoluminescence (PL) of Mo_{0.5}Wo_{.5}Se₂ monolayers (ML) embedded in hexagonal boron nitride (hBN) flakes. Measurements were done in magnetic field up to 30 T applied in two configurations: out-of-plane and in-plane. The MoWSe₂ ML should combine the properties of both "parents", which are members of different ML families. The WSe₂ MLs belong to the so called "darkish" MLs, in which the excitonic ground state is optically inactive (dark), while the MoSe₂ MLs is a representative of "bright" MLs with optically active ground state [2]. Fig. 1(a) shows the low-temperature PL spectra at selected out-of-plane magnetic field. The zero-field spectrum is composed of two well resolved emission lines, denoted as X and T, which we attribute correspondingly to the neutral and charged excitons. Upon application of the outof-plane magnetic field, these transitions split into two circularly polarized components ($\sigma\pm$) due to the excitonic Zeeman effect. The extracted transition energies are presented in Fig. 1(b) along with the extracted effective Lande g-factors. It is seen that the g-factors for both transitions significantly differ. While the g-factor of the T line of about -4.7 is similar to the reported value of about -4 [3], the g-factor of the X line is much bigger and equal to -7.3. Using DFT calculations, we predict that this value can be understood in terms of particular arrangements of bands in the investigated Mo_{0.5}W_{0.5}Se₂ ML. Moreover, the application of the in-plane magnetic field to the ML reveals an additional line observed in magnetic fields above 25 T. This transition is apparent around 16 meV below the X line. We show how our results support the conclusion that the Mo_{0.5}W_{0.5}Se₂ ML is a "darkish" material with bright-dark exciton splitting very similar to that of the MoS₂ ML [4].

References

- [1] Y. Meng, et al., Nano Letters, 19 1 (2019) 299-307
- [2] M. R. Molas et al., 2D Materials, 4 (2017) 021003
- [3] M. Koperski et al., 2D Materials, 6 (2019) 015001
- [4] C. Robert et al., Nature Communication, 11 (2020) 4037

Figures

Figure 1: (a) Helicity-resolved PL spectra of $Mo_{0.5}W_{0.5}Se_2$ ML at selected out-of-plane magnetic fields. (b) Extracted transition energies of the X and T lines from panel (a).