Probing Giant Zeeman Shift in Vanadium-Doped WSe2 via

Resonant Magnetotunneling Transport

Lan-Anh T. Nguyen,^{1,2,*} Jinbao Jiang,^{1,2,*} Tuan Dung Nguyen,^{1,2} Dinh Hoa Luong,^{1,2} Duk Young Kim,¹ Youngjo Jin,^{1,3} Philip Kim,³ Dinh Loc Duong , ^{1,2,†} and Young Hee Lee ^{1,2,4,‡}

¹Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea

²Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea

³Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

⁴Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea

DOI: 10.1103/PhysRevB.103.014441

Doping van der Waals layered semiconductors with magnetic atoms is a simple and effective approach to induce magnetism. However, investigation of the electrical properties of such two-dimensional semiconductors and the modulation of their magnetic order for spintronics is still lacking. Herein, we report a giant Zeeman shift from the spin-polarized state in tungsten diselenide (WSe₂) doped with a small amount of vanadium (V) atoms (~0.1%). The Zeeman shift was measured via resonant magnetotunneling spectroscopy with a vertical graphite/V-WSe₂/graphite heterojunction. The p-type doping state near the valence band is substantially shifted under an external magnetic field by 7.8 meV/T, equivalent to a giant g factor of approximately 135, an order of magnitude higher than that of other two-dimensional magnetic semiconductors. The ferromagnetic order of the spin glass state and its long-range interaction are revealed by the remanence of magnetoresistance between the zero-field cooling and field-cooling processes as well as magnetoresistance hysteresis. The ferromagnetic glass order is fully established at 50 K, whereas the long-range interaction persists at higher temperatures of up to 300 K in V-doped WSe₂ flakes with an approximate thickness of 5 nm. Our work sheds light on the magnetic nature of V-doped WSe₂ semiconductors and paves the way for future spintronics based on two-dimensional van der Waals magnetic semiconductors.

Figure | Probing the magnetism in V-WSe₂ from the spin polarization of the band structure to magneto-transport