

## Large perpendicular field in bilayer TMD via hybrid molecular gating

Sviatoslav Kovalchuk<sup>1</sup>, Abhijeet Kumar<sup>1</sup>, Simon Pessel<sup>1</sup>, Kyrylo Greben<sup>1</sup>, Dominik Christiansen<sup>2</sup>, Malte Selig<sup>2</sup>, Andreas Knorr<sup>2</sup>, Kirill Bolotin<sup>1</sup> <sup>1</sup>Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany <sup>2</sup>Institut für Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany kovalchook@gmail.com

We consider structures in which bilayer TMDs are sandwiched between a layer of molecules and Si gate. We show that these structure allow increasing, by a factor of 2, maximum electric field achievable in this 2D material. This in turn, allows reaching electric field >0.2 V/nm. In MoS<sub>2</sub> this is sufficient to bring interlayer excitons IX into resonance with either A or B intralayer excitons. We study coupling between these excitons, and give an outlook on the new technique to achieve large perpendicular electric fields detectable in optical measurements.



**Figure 1:** Schematic of a sample consisting of bilayer MoS<sub>2</sub> with electrostatic gate on one side, and molecules gate on the other, with potential defined by LUMO level of the molecule.





**Figure 2:** First derivative of reflectivity contrast, shows the highest optically detectable interlayer exciton Stark splitting in this material.