Doping Engineering through NH₃ Plasma Treatment for Threshold Voltage Control of MOCVD-Grown MoS₂ Thin-Film Transistor

Mingu Kang¹

Woonggi Hong¹, Sanggeun Bae¹, and Sung-Yool Choi^{1*}

¹School of Electrical Engineering, Graphene/2D Materials Research Center, Center for Advanced Materials Discovery towards 3D Displays, KAIST, 291 Daehakro Yuseong-gu, Daejeon 34141, South Korea.

Mingu5067@kaist.ac.kr

Abstract

Molybdenum disulfide (MoS₂) has been widely researched due to extraordinary properties such as atomically thin channel and high gate controllability, etc. However, the conventional doping method like ion implantation can give a large damage to the two-dimensional layer structure. In this study, we investigate a substitution nitrogen doping method with large area and uniformity through NH₃ plasma treatment. Since nitrogen acts as a p-type dopant for MoS_2 , it causes a positive threshold voltage (V_{th}) shift. On the other hand, during the nitrogen doping, sulfur vacancies or compressive strain from Mo-N bonding cause negative V_{th} shift. In this paper, we can observe that nitrogen doping causes change of V_{th} both positive and negative shift under specific conditions. As a result, V_{th} changed by +1.72 V and -0.94 V, electron carrier density changed by -3.4×10¹¹cm⁻² and +4.2×10¹¹cm⁻², respectively.

References

[1] Azcatl, A., et al., Nano letters, 16 (2016), 5437-5443

Figures

Figure 1: (a) TEM image of NH_3 plasma treatment multilayer MoS_2 . (b) EDS line scanning profiles of nitrogen doped MoS_2

Figure 2: I-V characteristics of the nitrogen doped MoS₂ device showing bidirectional V_{th} shift.