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Strain provides a powerful tool to tailor the scalar and vector potentials which Dirac 

fermions undergo in graphene. This gave rise to new phenomena at the nanoscale such as 

giant pseudo-magnetic fields and valley polarization [1]. Here, we unveil the effect of 

deformation on the quantum transport across a barrier of strained graphene.  We transfer a 

high-mobility exfoliated graphene flake covered by a thin hBN layer on a nanostructured 

hBN substrate. The Top-hBN layer and the graphene conform to the substrate, creating 

periodic strain-induced barriers for electrons over a length of 10 µm (Fig. 1. a) and b)). Using 

low-bias transport measurements, we observe the emergence of a broad satellite 

resistance peak at positive energy, in contrast with unstrained graphene [2] (Fig. 1 c) and 

d)). We show that this experimental trend is quantitatively described by the reduced 

transmission probabilities of ballistic electrons through a strain barrier that can be described 

by low-energy Hamiltonian of graphene modified by a scalar potential and a pseudo-

vector potential (Fig 1 e)) [3]. Our results demonstrates that corrugated van der Waals 

heterostructures is a promising platform for strain engineering with a view to applications 

and fundamental physics. 
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Figure 1: a) – Principle: Schematic view of the corrugated hBN/graphene/hBN device b) – 

Fabrication: Optical image of an encapsulated corrugated graphene. Inset: an AFM image of the 

corrugation c) Rds as a function of Vg at zero-biais for different temperatures. d) Map of differential 

resistance Rds as a function of the gate voltage Vg and of the bias voltage Vds at T = 4.4 K. e) – 

Theory: Transmission probability through a 150nm long strain barrier with uniaxial strain ε= 2% in the 

zigzag direction as a function of the electron energy E and the incidence angle on the barrier φ. 

Red lines correspond to the limits of authorized incident angles for valley K and the orange ones for 

valley K’  


