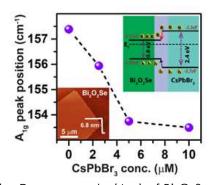
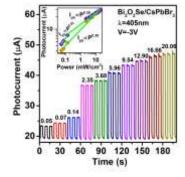
Efficient interfacial charge transfer in CVD grown non-van der Waals Bi₂O₂Se/CsPbBr₃ type-I heterostructure for improved photodetection

Md Tarik Hossain¹


Mandira Das¹, Joydip ghosh¹, Subhradip Ghosh¹, P K Giri^{1,2}
¹Department of Physics, Indian Institute of Technology Guwahati, Assam, India
²Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam, India
tarik@iitg.ac.in

Charge transfer in a 2D semiconductor heterostructure plays an important role in high-performance photodetectors and energy harvesting devices. Herein, we will discuss a series of experimental investigation of interfacial charge transfer in the Bi₂O₂Se/CsPbBr₃ (2D/0D) heterostructure through various microscopic and spectroscopic tools. We integrated the few-layer Bi₂O₂Se nanosheet (2D) possessing superior electron mobility and CsPbBr₃ nanocrystals (0D) with high light-harvesting capability for efficient broadband photodetection. The band alignment reveals a type-I heterojunction, and the device under reverse bias reveals a fast response time of 12 μ s/24 μ s (rise time/fall time) and an improved responsivity in the 390 to 840 nm range due to the effective interfacial charge transfer and efficient interlayer coupling at the Bi₂O₂Se/CsPbBr₃ interface. Notably, a photodetector with a peak responsivity of ~10³ A W⁻¹ was achieved in the Bi₂O₂Se/CsPbBr₃ heterostructure due to the synergistic effects in the heterostructure under ambient conditions. These results are significant for the development of non-van der Waals heterostructure based high-performance low-powered photodetectors.


References

[1] Hossain, M.T., et al., Nanoscale, 2021. 13(35): p. 14945-14959

Figures

Figure 1: Evolution of characteristics Raman mode (A_{1g}) of Bi_2O_2Se with the variation of CsPbBr₃ nanocrystals amount. Lower inset denotes Atomic force microscopy image of few layer Bi_2O_2Se grown on mica. Upper Inset shows the energy band alignment between the $Bi_2O_2Se/CsPbBr_3$ heterostructure.

Figure 2: Photocurrent response as a function of the illumination intensity (ON/OFF) for the heterojunction photodetector. The inset shows the power-law fitting.