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Optical nanoresonators are fundamental building blocks in a number of nanotechnology 

applications (e.g. in spectroscopy) due to their ability to efficiently confine light at the 

nanoscale. Recently, nanoresonators based on the excitation of phonon polaritons (PhPs) – 

light coupled to lattice vibrations – in polar crystals (e.g. SiC or h-BN) have attracted much 

attention due to their strong field confinement, high-quality factors, and potential to 

enhance the photonic density of states at mid-infrared (IR) frequencies [1]. Here, we go 

one step further by introducing PhPs nanoresonators that not only exhibit these 

extraordinary properties but also incorporate a new degree of freedom: twist tuning, i.e. 

the possibility to be spectrally controlled by a simple rotation (Fig. 1a). To that end, we both 

take advantage of the low-loss-in-plane hyperbolic propagation of PhPs in the van der 

Waals crystal -MoO3 [2], and realize a dielectric engineering of a pristine -MoO3 slab 

placed on top of a metal ribbon grating, which preserves the high quality of the polaritonic 

resonances. By simply rotating the -MoO3 slab in the plane (from 0 to 45º), we 

demonstrate by far- and near-field measurements that the narrow polaritonic resonances 

(with quality factors Q up to 200) can be tuned in a broad range (up to 32cm-1, i.e. up to ̴ 6 

times its full width at half maximum, FWHM ̴ 5 cm-1) (Fig 1b). Our results open the door to the 

development of tunable low-loss nanotechnologies at IR frequencies with application in 

sensing, emission, or photodetection. 
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Figure 1: PhPs nanoresonators in -

MoO3 defined by placing a pristine 

-MoO3 slab on top of metal ribbons. a. Schematics of the studied structure that allows defining the 

nanoresonators by ‘‘dielectric engineering’’ and controlling them by a twist angle, . b. Measured 

relative reflection spectra, R for twist angles  =0,15,30 and 45º.  
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