Flexible 2D Transistors and Solar Cells by Direct Transfer with Contacts

Alwin Daus^{1,8},

Koosha Nassiri Nazif¹, Sam Vaziri¹, Victoria Chen¹, Jiho Hong^{2,3}, Çağıl Köroğlu¹, Nayeun Lee^{2,3}, Ryan W. Grady¹, Connor S. Bailey¹, Frederick Nitta¹, Michelle E. Chen³, Hye Ryoung Lee², Aravindh Kumar¹, Kirstin Schauble¹, Siavash Kananian¹, Raisul Islam¹, Kwan-Ho Kim^{4,5}, Jin-Hong-Park^{4,6}, Kevin Brenner¹, Ada S. Y. Poon¹, Mark. L. Brongersma^{2,3,7}, Krishna C. Saraswat^{1,3}, Eric Pop^{1,3} ¹Electrical Engineering, Stanford University, Stanford, CA 94305, USA ²Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305, USA ³Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA ⁴Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea ⁵Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA. ⁶SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea ⁷Applied Physics, Stanford University, Stanford, CA 94305, USA ⁸Chair of Electronic Devices, RWTH Aachen University, 52074 Aachen, Germany

alwin.daus@eld.rwth-aachen.de

We present our recent work on a new integration process for two-dimensional (2D) and layered transition metal dichalcogenides (TMDs) on flexible substrates. Our direct transfer approach can be applied for various TMDs synthesized by different growth methods and with a wide range of thicknesses. In short, we pattern TMD and Au metal contacts on rigid silicon substrates before spin-coating and curing the flexible target substrate on top. All structures can then be easily released in deionized water (Fig. 1) and further processing is performed on the flexible substrate. This method enables us to create TMD transistors with nanoscale channel lengths and record-high drive currents >300 μ A/ μ m [1], comparable to flexible, light-weight TMD solar cells, where we employ graphene doped by molybdenum oxide as transparent top contact [2]. Our devices reach the highest power conversion efficiency (5.1%) and power-per-weight (4.4 W/g) reported for flexible TMD solar cells, comparable to prevailing thin-film photovoltaic technologies (e.g., III-Vs or copper indium gallium selenide). These results demonstrate the promise of 2D/layered TMDs for flexible (opto-)electronics and could lead to flexible self-powered electronic systems in the future.

References

- [1] A. Daus et al., Nature Electronics, 4, (2021), 495-501.
- [2] K. Nassiri Nazif et al., Nature Communications, 12, (2021), 7034.

Figures

Figure 1: (a) Schematic direct transfer process of 2D TMDs with patterned Au contacts. The PI becomes the flexible substrate after release from the rigid SiO₂/Si. (b) Optical microscope images before and after the transfer. Note, different colors of TMD on Au are due to different Au thicknesses.

Graphene2022