Scalable Optoelectronic Devices Based on Two-Dimensional Transition Metal Dichalcogenides

Gerd Bacher¹

Yannick Beckmann¹, Dominik Andrzejewski¹, Henrik Myja¹, Ulrike Hutten¹, Annika Grundmann², Songyao Tang², Clifford McAleese³, Xiaochen Wang³, Ben Conran³, Sergej Pasko⁴, Simonas Krotkus⁴, Holger Kalisch², Michael Heuken^{2,4}, Andrei Vescan², Tilmar Kümmell¹ ¹Werkstoffe der Elektrotechnik and CENIDE, University Duisburg-Essen, 47057 Duisburg, Germany ²Compound Semiconductor Technology, RWTH Aachen University, 52074 Aachen, Germany ³AIXTRON Ltd., Cambridge CB24 4FQ, United Kingdom ⁴AIXTRON SE, 52134 Herzogenrath, Germany gerd.bacher@uni-due.de

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) exhibit efficient light absorption and light emission combined with sub-nm thickness and are thus attractive for optoelectronic devices on rigid, curved or flexible substrates. While first proof-of-concept devices relied on mechanically exfoliated 2D TMDCs, the transfer to real-world applications is currently in the focus of research activities requiring both scalable materials and scalable device architectures. Here, we report on our recent efforts on the development of scalable concepts for both, light emitting and light sensing devices based on 2D TMDCs.

Wafer-scale films of TMDC monolayers [1] and TMDC heterostructures [2] have been grown in an AIXTRON MOCVD reactor and were integrated into optoelectronic devices with different architectures. First, a vertical p-i-n architecture was chosen for fabricating light emitting devices. Hereby, WS₂ monolayers were embedded between inorganic and organic support layers at the cathode and anode side, respectively. Large-area electroluminescence has been achieved with turn-on voltages as low as 2.5 V on rigid [3] as well as flexible [4] substrates. This concept has been extended by replacing WS₂ with a directly grown type II WS₂-MoS₂ heterostructure to realize a self-powered p-i-n photodetector that exhibits an on-off ratio of 10⁵ and an EQE of 17 %.

Second, a lateral device architecture with an interdigital contact mesh was developed for assembling large-area photosensors. The direct growth of a heterostructure comprising WS₂ and MoS₂ monolayers enables device fabrication without involving any transfer process. We demonstrate an enhancement of the responsivity by more than 5 orders of magnitude as compared to a single layer device, which we attribute to an efficient separation of optically generated electron-hole pairs at the WS₂-MoS₂ heterointerface [5]. In photosensors that combine a MOCVD-grown WS₂ monolayer as light sensitizer with CVD-grown graphene as a highly conductive channel, we have been able to shed light on the widely varying values of responsivity reported in literature for such devices. We demonstrate that adsorbate desorption can mask the intrinsic photoresponse in 2D heterostructure photodetectors. By using a multicolor optical pump – electrical probe technique, we disentangle both effects and extract the intrinsic photoresponse [6].

References

- [1] A. Grundmann et al., MRS Advances 4 (2019) 593
- [2] A. Grundmann et al., MRS Advances 5 (2020) 1625
- [3] D. Andrzejewski et al., ACS Photonics 6 (2019) 1832
- [4] D. Andrzejewski et al., Adv. Opt. Mat. 8 (2020) 2000694
- [5] U. Hutten et al., 2D Materials 8 (2021) 045015
- [6] Y. Beckmann et al., submitted