All-Chemical-Vapor-Deposition of Ternary MoS₂/WS₂/Graphene Vertical van der Waals Heterostructures

Jakub Sitek¹

Iwona Pasternak¹, Karolina Czerniak-Łosiewicz¹, Michał Świniarski¹, Paweł P. Michałowski², Clifford McAleese³, Xiaochen Wang³, Ben R. Conran³, Konrad Wilczyński¹, Mariusz Zdrojek¹, Włodek Strupiński¹ ¹Warsaw University of Technology, Faculty of Physics; Koszykowa 75, 00-662 Warsaw, Poland ²Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Aleja Lotników 32/46, 02-668 Warsaw, Poland

³AIXTRON Ltd, Buckingway Business Park, Anderson Road, Swavesey, CB24 4FQ, United Kingdom jakub.sitek@pw.edu.pl / jakub.w.sitek@gmail.com

Van der Waals heterostructures (vdWHS) [1] provide a unique playground to study fundamental physics and practical applications of two-dimensional (2D) materials. Today, however, most 2D heterostructures are prepared by transfer, and only simple, binary stacks are grown by chemical vapor deposition (CVD) [2].

Here, we report the all-CVD growth of ternary MoS₂/WS₂/graphene vertical vdWHS without transfer step [3]. By atomic force microscopy, photoluminescence, Raman spectroscopy, and secondary ion mass spectroscopy, we confirm the vertical stacking of three different monolayer 2D materials, indicating the quality of the underlying layers is preserved after the growth runs. Optical studies revealed that while we observe the interlayer exciton in MoS₂/WS₂ heterostructure, it is quenched in MoS₂/WS₂/graphene due to the conductive graphene layer. Finally, the MoS₂/WS₂/graphene-based device shows the potential of being used as a photoresponsive memory device.

These results demonstrate the applicability of ternary all-CVD vdWHS and pave the way for the growth of more complex 2D heterostacks.

References

- [1] A. Geim, I. Grigorieva, Nature, 499 (7459), 2013, pp.419-425
- [2] Z. Cai, B. Liu, X. Zou, H.-M. Cheng, Chemical Reviews 118 (13), 2018, pp. 6091-6133
- [3] J. Sitek, I. Pasternak, K. Czerniak-Łosiewicz, M. Świniarski, P.P. Michałowski, C. McAleese, X. Wang, B.R. Conran, K. Wilczyński, M. Zdrojek, W. Strupiński, submitted, 2021

Figures

Figure 1: a) Schematic representation of the ternary heterostructure; b) photoluminescence spectrum of the ternary heterostructure; c) comparison between MoS₂/WS₂ and MoS₂/WS₂/graphene showing lack of interlayer (IL) exciton in the latter.

Graphene2021