Probing heat response in 2D materials by opto-thermal Raman method Priyank Singh¹

Suman Sarkar¹, Kyung Yeol Ma², David Jegouso¹, Corinne Felix¹, Pierre Bouvier¹, Marie-Aude Méasson¹, Pierre Rodière¹, Michele Lazzeri³, Laëtitia Marty¹, Nedjma Bendiab¹

¹Univ. Grenoble Alpes, CNRS, Institut Néel, 38000 Grenoble, France

²Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea

³Sorbonne Université, MNHN, UMR CNRS 7590, IRD, IMPMC, Paris, France priyanksingh33@gmail.com

Abstract

Heat transport in 2D materials gives us the opportunity to explore new physics; the Fourier law of heat transport seems to be no more applicable in such systems due to extremely low thickness[1]. 2D materials (Graphene, TMDCs, hBN) become a challenging platform due to the fact that phonons can interact with different particles such as electrons, excitons and substrate etc. These interactions cause new observation for thermal response. There are some reports in literature for suspended cases [2][3] but often the devices made out of these materials require a supporting substrate[4]. In this work, we investigated to explore heat response of different 2D materials, exfoliated on a standard Si/SiO₂ substrate, using the optothermal Raman response. The chosen materials range from wide bandgap semiconductors to metals. We will discuss the the effect of electronic properties on our experimentally observed thermal response.

References

- [1] Gu X. et al Rev Mod Phys, 90, 041002 (2018)
- [2] Peimyoo N. et al Nano Research, 8, 1210–1221 (2015)
- [3] Wang R. et al Nanoscale, 10, 23087 (2018)
- [4] K. Thakar and S. Lodha, Mater. Res. Express, 7, 014002 (2020)