2D Materials Based van der Waals Heterostructures by Pulsed Laser Deposition (PLD)

Martando Rath¹

Cardin Julien², Christophe Labbé², Adrian David¹, Wilfrid Prellier¹, Ulrike Lüders¹ and Arnaud Fouchet¹ ¹ Normandie Univ, ENSICAEN, UNICAEN, CNRS, CRISMAT, 14000, Caen, France ²CIMAP (UMR6252 CNRS – ENSICAEN – Université de Caen Normandie - CEA), 6 boulevard Maréchal Juin, 14050 Caen cedex 4, France martando.rath@ensicaen.fr & arnaud.fouchet@ensicaen.fr

Since the discovery of Graphene, atomically thin semiconductor 2D materials and their van der Waals heterostructures have attracted a lot of interest for electronic and optoelectronic devices [1, 2]. For the growth of 2D materials and heterostructures, Pulsed laser Deposition (PLD) has emerged recently as a suitable growth technique. It allows a homogeneous deposition on the substrate on the cm² scale, an efficient control of the number of layers, and stoichiometric transfer of the target material during the growth [3, 4]. In present study, we will discuss the deposition conditions and characterizations of individual layers of WS₂ and MoS₂ grown on sapphire and STO substrate by PLD. The presence of two prominent Raman modes E_{2g}^1 which appear at ~359 cm⁻¹ for WS₂ and ~386 cm⁻¹ for MoS₂ due to in plane vibration and A_{1g} mode which appears ~421 cm⁻¹ and ~407 cm⁻¹ for WS₂ and MoS₂ respectively due to out of plane vibration mode confirm the formation of 2D materials on those substrates [5]. The transport study confirms that MoS₂ exhibits p-type and WS₂ show ntype behavior. Finally, PLD grown 2D van der Waals heterojunctions are grown by successive stacking of p-type MoS₂ and n-type WS₂ layers [6]. The presence of Raman modes obtained on the p-n heterojunctions on sapphire and STO substrates confirms the success of the growth (as shown on figure 1). A detail analysis of PLD grown p-n heterojunctions with different MoS₂ and WS₂ layers will be presented and discussed.

References

- [1] Andrea C. Ferrari et.al., Nanoscale, 7 (2015) 4598-4810
- [2] Riccardo Frisenda, Aday J. Molina-Mendoza, Thomas Mueller, Andres Castellanos-Gomez and Herre S. J. van der Zant, Chem. Soc. Rev., 47 (2018) 3339-3358
- [3] Tamie A. J. Loh and Daniel H. C. Chua, ACS Appl. Mater. Interfaces, 6 (2014) 15966-15971
- [4] Martha I. Serna et.al., ACS Nano, 10 (2016) 6054–6061
- [5] Sangyeon Pak et.al. Nano Lett. 17 (2017) 5634-5640
- [6] Victro Zatko et.al. ACS Nano 15 (2021) 7279-7289

Figure

Figure 1: Raman Spectra of the herterostructures ($MoS_2/WS_2/STO$) and individual layers of MoS_2 and WS_2 grown on STO substrate

Graphene2021