Dielectric permittivity and strength of hexagonal boron nitride

Bernard Plaçais¹

Aurélie Pierret¹, David Mele¹, Holger Graef¹, Jose Palomo¹, Takashi Taniguchi², Kenji Watanabe², Yandi Li³, Bérangère Toury³, Catherine Journet³, P. Steyer⁴, V. Garnier⁴, Christophe Voisin¹, Jean-Marc Berroir¹, Gwendal Fève¹, Emmanuel Baudin¹, Michael Rosticher¹ and Bernard Plaçais¹

¹Laboratoire de Physique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris

²Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047

³Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France ⁴Universite de Lyon, MATEIS, UMR CNRS 5510, INSA-Lyon, F-69621 Villeurbanne cedex, France

bernard.placais@phys.ens.fr

Hexagonal boron nitride (hBN) is a van der Waals insulator extensively used as gate dielectric in 2D material heterostructures. It is important to improve its characterization in terms of low-field permittivity and high-field strength up to the breakdown voltage. The present study, based on DC and RF transport in Au-hBN-Au capacitors aims at filling this gap. We benchmark two capacitor series: one with high-pressure, high-temperature crystals (NIMS) and one with crystals obtained by the polymeric route (LMI).

From RF measurements in hBN crystals of thickness 10-100 μ m, we extract a recommended value for the dielectric constant $\epsilon = 3.4 \pm 0.2$, which narrows down the commonly used estimate $\epsilon = [3 \rightarrow 4]$.

Dielectric strength is characterized by monitoring the leakage current as function of DC bias. It is well described in terms of a nonlinear dielectric conductivity with turns out to obey the Frenkel-Pool trap-assisted, thermally activated, Schottky transport law [1,2]

$$\frac{J}{E} = \sigma_{BD} \times Exp\left[-e\frac{\Phi_B - \sqrt{eE/\pi\epsilon_0\epsilon}}{kT}\right] \quad (1)$$

where Φ_B is the deep-level trap energy and σ_{BD} the conductivity for fully ionized traps. Figure 1 illustrates the characteristic \sqrt{E} lowering of the trapping barrier, and the thermally activated nature of conductivity (inset). We find a small variability of the trap energy, $\Phi_B = 1.27 \mp 0.03 \ eV$ for the best samples and $\Phi_B \le 1 \ eV$ for defective samples. The largest value is quite comparable with literature measurements in SiO2 [3] and Si3N4 [4].

References

[1]J. Frenkel, "Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors", Phys. Rev. 54, 647 (1938).

[2] S.M. Sze and K. Ng, "Physics of Semiconductor Devices", Wiley-3rd edition, Section 6.7.2 (2007)

[3] W.R. Harrell, J. Frey, "Observation of Poole Frenkel effect saturation in SiO2 and other insulating films", Thin Solid Films 352, 195 (1999).

[4] S.M. Sze, "Current Transport and Maximum Dielectric Strength", J. Appl. Phys. 38, 2951 (1967)

Figures

Figure 1: Frenkel-Pool plot of high-field hBN conductivity. Red symbols correspond to NIMMS crystals and blue symbols to LMI crystals. Solid lines correspond to theoretical fits to the Frenkel-Pool law (1) taking $\sigma_{BD} = 0.1 \,\mu S/cm$, $\Phi_B = 1.27 \, eV$ (red line) and $\Phi_B = 0.9 \, eV$ (blue line).