Dielectric screening in van der Waals materials probed through Raman spectroscopy

Loïc Moczko¹

Aditya Singh², Xin Zhang¹, Luis E. Parra López¹, Joanna Wolff¹, Etienne Lorchat¹, Michelangelo Romeo¹, Rajendra Singh², Takashi Taniguchi³, Kenji Watanabe³, Sven Reichardt⁴, Ludger Wirtz⁴ & Stéphane Berciaud¹

- ¹ Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, France
- ² Indian Institute of Technology, New Delhi, India
- ³ National Institute for Materials Science, Tsukuba, Ibaraki, Japan
- ⁴ Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg

loic.moczko@ipcms.unistra.fr; stephane.berciaud@ipcms.unistra.fr

Raman spectroscopy is a powerful characterization tool for low-dimensional materials. In particular, it is widely used to probe strain fields, doping or dielectric screening in graphene layers [1]. These characteristics can be finely engineered using van der Waals (vdW) heterostructures [2]. Here, using a large variety of vdW heterostructures, we show that the well-known Raman 2D mode of graphene is uniquely sensitive to dielectric screening and undergoes a sizeable upshift in excess of 15 cm⁻¹ when comparing a bare suspended graphene monolayer with a graphene/transition metal dichalcogenide (TMD) heterostructure (Fig. 1). This upshift stems from the smearing of the Kohn anomaly that affects transverse optical phonons at the K point of the Brillouin zone [3]. Our results show that a single TMD monolayer smears the Kohn anomaly more efficiently than bulk Boron Nitride.

References

- [1] A.C. Ferrari & D.M. Basko, Nature Nanotechnology, 8 (2013) 235.
- [2] G. Froehlicher, E. Lorchat & S. Berciaud, Phys. Rev. X, 8 (2018) 011007.
- [3] F. Forster, A. Molina-Sanchez, S. Engels, A. Epping, K. Watanabe, T. Taniguchi, L. Wirtz & C. Stampfer, Phys. Rev. B, 88 (2013) 085419.

Figure

Figure 1: (a) Optical image of a graphene/WSe₂ heterostructure deposited on an Si/SiO₂ substrate with pre-patterned holes. (b) Hyperspectral Raman map of the graphene 2D-mode frequency. The mapping area corresponds to the white rectangle in (a). (c) Typical Raman spectra of SiO₂-supported graphene (black diamond) and graphene/WSe₂ (purple diamond), and suspended graphene (black circle) and graphene/WSe₂ (orange circle).

Graphene2021