Local dielectric-function modulation and exciton recombination efficiency in monolayer WS₂ flakes

Michele Magnozzi^{1,2}

T. Pflug³, M. Ferrera¹, S. Pace³, L. Ramò¹, M. Olbrich³, P. Canepa¹, H. Agircan⁴, A. Horn³, S. Forti⁴, O. Cavalleri¹, C. Coletti⁴, F. Bisio⁵, M. Canepa¹

¹ Università di Genova, via Dodecaneso 33 16146 Genova, Italy

² Istituto Nazionale di Fisica Nucleare, Sezione di Genova, via Dodecaneso 33 16146 Genova, Italy

³ Laserinstitut Hochschule Mittweida, Technikumplatz 17 09648 Mittweida, Germany

⁴ Center for Nanotechnology Innovation IIT@NEST, Piazza San Silvestro 12, 56127 Pisa, Italy

⁵ CNR-SPIN, Corso Perrone 24, 16152 Genova, Italy

magnozzi@fisica.unige.it

Excitons dominate the light absorption and re-emission spectra of monolayer transitionmetal dichalcogenides (TMD)¹. Microscopic investigations of the excitonic response in TMD almost invariably focus on the radiative recombination, which only constitutes one-half of the picture. Here, we provide a comprehensive description of the excitonic effects in the absorption and re-emission spectra of WS₂ flakes by originally combining state-of-the-art imaging ellipsometry (lateral resolution $< 1 \mu m$) and imaging photoluminescence spectroscopy (Figure 1). By relying on a proven methodology to maximize the information extracted from ellipsometry data², for the first time we obtain the local dielectric function of monolayer WS₂, which constitutes a fundamental physical quantity to describe light-matter interaction on a microscopic scale. By comparing the exciton-induced absorption and reemission features, we observed correlated and uncorrelated spatial patterns, thus demonstrating that the two phenomena are not always proportional at a microscopic scale. Micro-structural modulations across the flakes, having a different influence on the absorption and re-emission of light, are deemed responsible for this effect. By revealing the possibility to locally decouple the exciton-induced absorption and emission properties, these findings advance the fundamental understanding of excitonic processes in TMD, and may be of use to engineer diverse optical properties within individual flakes.

References

- [1]G. Wang, A. Chernikov, M. Glazov, T.Heinz, X. Marie, T. Amand, B. Urbaszek. Rev. Mod. Phys. 90:021001, 2018.
- [2] M. Magnozzi; M. Ferrera; G. Piccinini; S. Pace; S. Forti; F. Fabbri; C. Coletti; F. Bisio; M. Canepa. 2D Mater. 7:025024, 2020.

Figures

Figure 1: Microscopic spectral analysis of exciton formation (left) and recombination (right). We found that the two phenomena might lack spatial correlation within individual WS₂ flakes. Notably, the absorption and emission maxima may be located in different parts of the flake.

Graphene2021