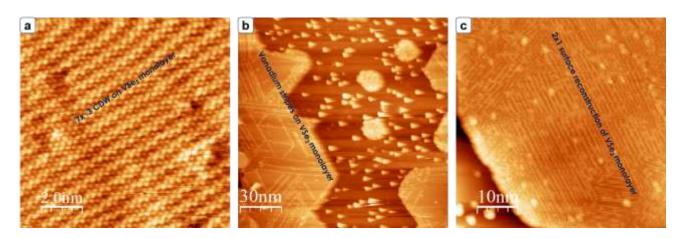
Modification of monolayer 1T-VSe₂ by selective deposition of vanadium and tellurium

Abhishek Karn

Woei Wu Pai National Taiwan University, Department of Physics, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan d06222017@ntu.edu.tw


Abstract

Hetero-structures of transition metal dichalcogenide (TMD) layers offer vast possibilities of new materials properties. Since TMD hetero-structures have weak van der Waals interlayer interactions, lattice mismatch is less likely a serious constraint. Nonetheless, the growth behaviours of such TMD hetero-structures can be complex and are not well documented. Here, we report an attempt to grown VTe₂/VSe₂ hetero-bilayers using molecular beam epitaxy. STM observation shows several structure modifications of a VSe₂ monolayer by the deposition of either Te, V or both. With a typical growth temperature of 300 °C and a nominal flux rate, we found Te deposition leaves the VSe₂ intact, with the ($\sqrt{7x}\sqrt{3}$) characteristic CDW of monolayer VSe₂¹. Vanadium deposition, in contrast, leads to the formation of small clusters ordered in stripes along VSe₂ lattice close-packed directions. With V and Te co-deposition, a dramatic change of the monolayer surface structure to a (2x1) ordered phase is observed. VSe₂ CDW is found to disappear as a consequence of confinement. This study illustrates the unexpected complexities involved in preparing even a simple bilayer TMD hetero-structure such as VTe₂/VSe₂. Some reasoning of the observed phenomena will be given.

References

 P. Chen, W. W. Pai, Y. H. Chan, V. Madhavan, M. Y. Chou, S. K. Mo, A. V. Fedorov and T. C. Chiang, Phys. Rev. Lett., 19 (2018) 196402

Figures

Figure 1: (a) Atomic resolution of characteristic ($\sqrt{7}x\sqrt{3}$) CDW of 1T-VSe₂ monolayer upon Te deposition. (b) Topography of a VSe₂ monolayer after V deposition. (c) Morphology of the apparently reconstructed VSe₂ island after co-deposition of V and Te flux.