Spin-charge interconversion in transition metal diselenides

Khasan Abdukayumov

Céline Vergnaud, Alain Marty, Frédéric Bonell, Hervé Boukari, Hanako Okuno†, Vincent Maurel‡, Serge Gambarelli‡, Matthieu Jamet Univ. Grenoble Alpes, CEA, CNRS, Spintec, 38000 Grenoble, France † Univ. Grenoble Alpes, CEA, MEM, 38000 Grenoble, France ‡ Univ. Grenoble Alpes, CEA, CNRS, SYMMES, 38000 Grenoble, France Khasan.abdukayumov@cea.fr

Layered Transition metal diselenides (TMD) exhibit a large variety of physical properties ranging from semiconductors (MoSe₂, WSe₂), semimetals (PtSe₂), metals (VSe₂, TaSe₂) and superconductors (NbSe₂). More recently, ferromagnetism was also observed in CrSe₂ [1]. They possess large spin-orbit coupling and diverse crystalline symmetries (2H, 1T or 1T'). These properties are key ingredients to produce and tailor large spin-orbit torques (SOT) into an adjacent ferromagnetic layer by charge-to-spin conversion. These materials are thus promising candidates for the development of ultra-compact SOT magnetic random access memories (SOT-MRAMs) or all van der Waals SOT-MRAMs.

Until now, the spin-charge interconversion studies were performed on flakes (1-10 µm) of TMDs [2]. In this presentation, we focus on large area (1 cm²), high crystalline quality TMDs (WSe₂, PtSe₂, VSe₂, NbSe₂ and their alloys) grown by molecular beam epitaxy (MBE) in the van der Waals regime (see Fig. 1a-c) [3]. We are primarily interested in studying spin-to-charge conversion in these materials by inverse spin Hall or Rashba Edelstein effects. For this, we use the spin pumping-ferromagnetic resonance (SP-FMR) technique sketched in Fig. 1d [4]. The excitation of the FMR of CoFeB grown in situ (without breaking the vacuum) on the TMD generates a spin current converted into a charge current in the TMD. We aim at investigating the influence of the thickness and symmetries of the TMD on the conversion. Our preliminary results show efficient spin-to-charge conversion in W_{0.9}V_{0.1}Se₂ (2D metallic alloy) and NbSe₂ whereas it is absent in PtSe₂ and VSe₂. We will discuss our first conclusions considering the spin-orbit coupling and crystal symmetries.

References

- [1] B. Li et al., Nat. Mater. 20, 818 (2021)
- [2] J. Hidding and Marcos H. D. Guimaraes, Front. Mater. 7:594771 (2021)
- [3] M. T. Dau et al., ACS Nano **12**, 2319 (2018)
- [4] K. Ando et al., J. Appl. Phys. 109, 103913 (2011)

Figures

Figure 1: a and **b**, Electron diffraction (RHEED) patterns of 5 ML of PtSe₂ epitaxially grown on graphene/SiC along two different azimuths separated by 30°. The anisotropic character shows the single crystalline character of the film. **c**, cross-section scanning transmission electron microscopy image showing 5 ML of V_{0.65}Pt_{0.35}Se₂ epitaxially grown on graphene/SiC. **d**, sketch of the SP-FMR technique.

Graphene2021