Terahertz Rectennas on Flexible Substrates Based on One-Dimensional Metal-Insulator-Graphene Diodes

Andreas Hemmettera,b

Xinxin Yang^c, Zhenxing Wang^a, Martin Otto^a, Burkay Uzlu^{a,b}, Marcel Andree^d, Ullrich Pfeiffer^d, Andrei Vorobiev^c, Jan Stake^c, Max C. Lemme^{a,b}, and Daniel Neumaier^{e,a}

^aAMO GmbH, 52074 Aachen, Germany

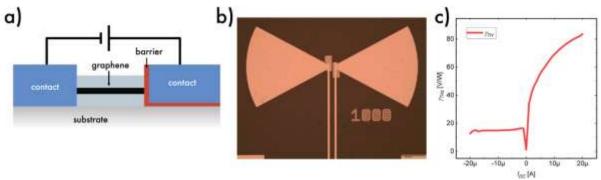
bChair of Electronic Devices, RWTH Aachen University, 52074 Aachen, Germany

^cDepartment of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden

dinstitute for High-Frequency and Communication Technology, University of Wuppertal, 42119 Wuppertal, Germany

^eChair of Smart Sensor Systems, University of Wuppertal, 42119 Wuppertal, Germany hemmetter@amo.de

Introduction. Diode-coupled antennas (rectennas) enable on-chip energy harvesting of terahertz (THz) radiation for low power circuits.[1] The rectenna's performance is mainly limited by the diode's responsivity and frequency response.[2] Here, we demonstrate a rectenna based on a one-dimensional (1D) metal-insulator-graphene (MIG) diode (Fig. 1a) capable of rectifying radiation up to 170 GHz in free-space measurements.[1]


Fabrication. Flexible polyimide is used as a substrate. Oxide-encapsulated single layer graphene grown by chemical vapor deposition is etched to reveal the 1D edge. A conformal TiO₂ barrier layer and a metallic contact are deposited, completing the 1D MIG junction. An ohmic edge contact is formed on the other side of the graphene channel in an analogous way, along with a metallic bowtie antenna, shown in Fig. 1b.[1,3,4]

Results. The sample was irradiated by a THz beam from 110 to 170 GHz under bias, and the DC output was measured. The optical responsivity $\gamma_{THZ} = \frac{2\sqrt{2}\,\Delta V}{P_{ava}}$ (ΔV : measured rectified DC voltage, P_{ava} : available output power of the THz source) surpassed 80 V/W (Fig. 1c), with a noise equivalent power of 80 pW/ \sqrt{Hz} , thereby outperforming comparative metal-insulator-metal rectennas.[1,2,4]

References

- [1] Hemmetter, A., et al., ACS Appl. Electron. Mater., 3 (2021) 3747-3753
- [2] Wang, Z., et al., Adv. Electron. Mater., 7 (2021) 2001210
- [3] Wang, Z., et al., ACS Appl. Electron. Mater., 1 (2019) 945-950
- [4] Shaygan, M., et al., Nanoscale, 9 (2017) 11944-11950

Figures

Figure 1: a) Cross-section of a 1D MIG diode. b) Micrograph of the rectenna. c) Measured responsivity.