Raman and XPS characterization of synthesized PtSe₂ thin films

Oliver Hartwig¹

Maximilian Prechtl¹, Sebastian Lukas², Satender Kataria², Kangho Lee¹, Cormac Ó Coileáin^{1,3}, Tanja Stimpel-Lindner¹, Max Lemme², Georg S. Duesberg^{1,3}

1 Insitute of Physics, Universität der Bundeswehr München, Werner-Heisenberg-Weg 3, 85577 Neubiberg, Germany

2 Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Str. 2, 52074 Aachen, Germany

3 Centre For Research on Nanostructure and Nanodevices, School of Chemistry, Trinity College Dublin, Dublin 2, Ireland

oliver.hartwig@unibw.de

Platinumdiselenide (PtSe₂) is a layered noble metal dichalcogenide (NMD) with a number of remarkable properties. The bulk semimetal undergoes a transition to semiconductor with decreasing number of atomic layers. Few layered PtSe₂ possesses a band gap in the infrared region. Further, PtSe₂ can be synthesized at low temperatures and has proven to be relatively air stable, both prerequisites for most applications. Achieving a high film quality is crucial in order to maximize the performance of devices such as chemical sensors [1], IR-Photodetectors [2] or pressure sensors [3].

Here we present a detailed Raman and XPS characterization of grown PtSe₂ thin films. Wafer scale synthesis of PtSe₂ was achieved through selenization of pre-deposited platinum thin films by Thermally Assisted Conversion (TAC) using a custom designed reactor. The growth was carried out at temperatures between 400 °C and 600 °C on various substrates with selenium as a solid state precursor. Synthesis optimization shows a high dependence of the film quality on the process parameters. With carefully defined metrics for Raman and XPS measurements minor variations in quality and structural composition of the PtSe₂ films can be identified [4]. This precise quality assessment of PtSe₂ is a step forward in the development of 2D materials based hybrid devices.

References

- [1] C. Yim et al., ACS Nano, 10 (2016), 9550
- [2] C. Yim et al., Nano Lett, 3 (2018), 1794
- [3] S. Wagner et al., Nano Lett., 6 (2018), 3768
- [4] S.Lukas et al., Adv. Funct. Mater. 31 (2021), 2102929

Figures

Figure 1: a) Direct selenization of pre-deposited Platinum layers. b) PtSe₂ thin films on SiO₂/Si. c) Raman spectra of the selenized PtSe₂ films. The varying quality of all successful converted films is evident in the statistical analysis of Raman mapping.

Graphene2021