Strain-Induced Exciton to Trion Conversion in Monolayer Transition Metal Dichalcogenides

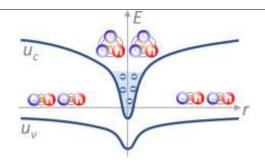
Moshe G. Harats, the Department of Materials Engineering, Ben Gurion University, Be'er Sheva, Israel

Jan N. Kirchhof, Sviatoslav Kovalchuck, Mengxiong Xiao, Kirill Greben, Guillermo Lopez-Polin, Kirill I. Bolotin

Faculty of Physics, Freie University Berlin, Berlin, Germany Contact@E-mail mharats@bgu.ac.il

Abstract

In 2D transition metal dichalcogenides (TMDCs), strain has been used as an efficient tool for bandgap engineering. It has been proposed to use non-uniform strain as a tool to create a "funnel" for excitons, an excited bound electron-hole pair in TMDCs, to achieve a highly efficient broadband solar cell [1].


In this work we mimic the exact proposal in Ref. [1]. We construct an all-optical all-electrical atomic-force-microscope (AFM) and strain non-uniformly a monolayer of WS₂. Surprisingly, we do not see any "funnel" effect as we found that the diffusion of the excitons, an effect that is highly efficient at room-temperature, limits the "funnel" effect. On the other hand, we observe an efficient conversion of excitons into negatively charged trions (see Fig. 1) [2]. This is the first demonstration of electrostatic gating using mechanical deformation with external electric fields. This effect has been shown also with pressurized membranes with different geometries (circles and triangles) [3].

We analyze theoretically and numerically the influence of the diffusion for different temperatures and heterostructures and we find that the efficiency increases both at low temperatures and for long-lived indirect excitons in heterostructures [4]. This leads to the next generation of "funnel" devices with TMDCs heterostructures.

References

- [1] J. Feng, X. Qian, C.-W. Huang, and J. Li, Nature Photonics 6, (2012), 866–872.
- M. G. Harats, J. N. Kirchhof, M. Qiao, K. Greben, and K. I. Bolotin, Nature Photonics, 14 (5), (2020), 324-329
- [2] S. Kovalchuk, M. G. Harats, G. López-Polín, J. N. Kirchhof, K. Höflich, K. I. Bolotin, 2D Materials 7 (3), (2020), 035024
- [3] M. G. Harats, K. I. Bolotin, 2D Materials 8 (1), (2020), 015010

Figures

Figure 1: Description of the exciton to trion conversion. The non-uniform strain changes the bandstructure and the density of free electrons in the center of the "funnel" increases, leading to increased trion density and decreased exciton density.

Graphene2021