Strong magnetoresistance in a graphene Corbino disk at low magnetic fields [1]

Vanessa Gall

Masahiro Kamada, Jayanta Sarkar, Manohar Kumar, Antti Laitinen, Igor Gornyi, Pertti Hakonen Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany vanessa.gall2@kit.edu

We have measured the magnetoresistance of suspended graphene in the Corbino geometry at magnetic fields up to B=0.15T, i.e., in a regime uninfluenced by Shubnikov-de Haas oscillations. The low-temperature relative magnetoresistance R(B)-R(0)/R(0) approaches 100% at the highest magnetic field studied at the Dirac point with a quite weak temperature dependence below 30K. A decrease in the relative magnetoresistance by a factor of two is found when charge carrier density is increased to $|n| \approx 3 \times 10^{-10}$ cm⁻². The gate dependence of the magnetoresistance allows us to characterize the role of scattering on long-range (Coulomb impurities, ripples) and short-range potential [2], as well as to separate the bulk resistance from the contact one. Furthermore, we find a shift in the position of the charge neutrality point with increasing magnetic field, which suggests that magnetic field changes the screening of Coulomb impurities around the Dirac point.

References

 M. Kamada, V. Gall, J. Sarkar, M. Kumar, A. Laitinen, I. Gornyi, P. Hakonen, Strong magnetoresistance in a graphene Corbino disk at low magnetic fields, arXiv:2105.03145 (2021)

 P. S. Alekseev, A. P. Dmitriev, I. V. Gornyi, and V. Y.Kachorovskii, Strong magnetoresistance of disordered graphene, Physical Review B87, 165432 (2013)

Figures

Figure 1: Non-normalized magnetoresistance R(B)-R(0) for 4K for various values of gate voltage. The dashed lines correspond to the function used for fitting and solid lines to theoretical zero-temperature magnetoresistance, calculated using the parameter from the fit. Figure taken from [1].