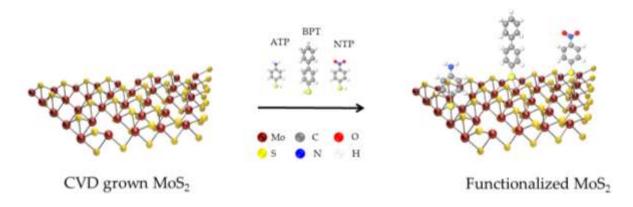
The healing effect of thiol-bearing molecules on CVD grown MoS₂

Giovanna Feraco,¹

Oreste De Luca,¹ Ali Syari'ati,¹ Abdurrahman Ali El Yumin,¹ Jianting Ye,¹ Raffaele G. Agostino,² and Petra Rudolf¹

1-Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands

2-Dipartimento di Fisica, Università della Calabria, 87036 Arcavacata di Rende (Cs), Italy g.feraco@rug.nl


Abstract

Vacancies in atomically thin molybdenum disulfide (MoS_2) play an important role in controlling its optical and electronic properties, which are crucial for applications such as gas sensors, catalysts and electronics¹. For this reason, defect engineering employing thiol-terminated molecules is used to either heal or functionalize the defective nanosheets^{2,3}. Here CVD grown MoS_2 with different defect densities was functionalized with three molecules, 4-aminothiophenol, 4-nitrothiophenol, and biphenyl-4-thiol. The molecules' efficacy in functionalizing the MoS_2 was probed by X-ray photoelectron spectroscopy, Raman and photoluminescence spectroscopies.

References

- [1] Hong, J. H., et al., Nat. Commun., 6, 6293 (2015)
- [2] Sim, D.M., et al., ACS Nano 9, 12, 12115-12123 (2015)
- [3] Syari'ati, A., et al., Chem. Commun., 55, 10384-10387 (2019)

Figures

Figure 1: Schematic illustration of surface functionalization using thiol-bearing molecules on CVD grown MoS₂.