Superconducting contacts to mono- and few-layer semiconductor crystals

Ian Correa Sampaio^[a], Mehdi Ramezani^[a,b], Kenji Watanabe^[c], Takashi Taniguchi^[c], Zakhar R. Kudrynskyi^[d], Amalia Patanè^[d], Christian Schönenberger^[a,b] and Andreas Baumgartner^[a,b]

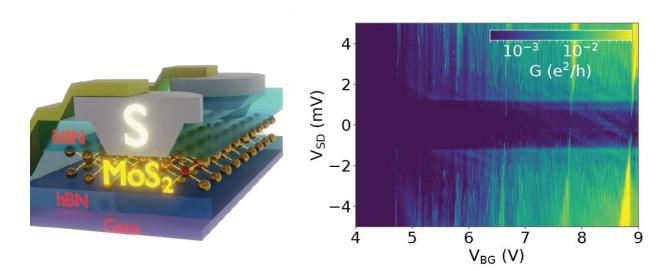
[a] Department of Physics, University of Basel, CH-4056, Basel, Switzerland

[b] Swiss Nanoscience Institute, University of Basel, CH-4056, Basel, Switzerland

[c] Research Center for Functional Materials, National Institute for Material Science, Tsukuba 305-0044, Japan

[d] School of Physics and Astronomy, University of Nottingham, NG7 2RD Nottingham, United Kingdom

ian.correasampaio@unibas.ch


Abstract

Superconductor-Semiconductor hybrid devices have proven most fruitful for fundamental research and applications, such as gate tunable qubits [1], thermoelectrics [2] and exotic quantum states [3]. Two-dimensional materials, such as transition metal dichalcogenides (TMDCs), are promising candidates for spin- and valleytronics applications, as well as a platform to study topological phenomena. Here, we demonstrate hybrid devices based on monolayer MoS_2 , a semiconducting TMDC, contacted by vertical interconnect access (VIA) [4] superconducting contacts [5]. The transport characteristics of the devices exhibit a superconducting energy gap, which we probe as a function of magnetic field and temperature [5]. In addition, we discuss zerobias and finite-bias conductance peaks and Fabry-Pérot-type resonances, and compare MoS_2 and InSe devices fabricated with the same method.

References

- [1] T. Larsen et al., Phys. Rev. Lett. 115, 127001 (2015).
- [2] M. Leivo et al., Appl. Phys Lett. 68, 1996 (1996).
- [3] V. Mourik et al., Science, 336, 1003 (2012).
- [4] E. J. Telford et al., Nano Lett., 18, 1416 (2018).
- [5] M. Ramezani et al., Nano Lett., 21, 5614 (2021).

Figures

Figure 1: Left: Illustration of superconducting VIA contacts in an MoS₂ device. Right: Differential conductance between two VIA contacts to a monolayer of MoS₂ plotted as function of the applied bias and gate voltage.