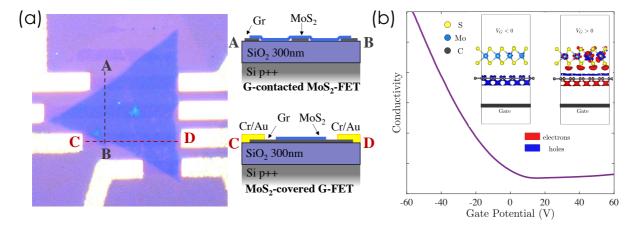
Charge transport in van der Waals heterostructures and multi-FET architectures

G.Ciampalini^(1,2,3), F.Fabbri⁽³⁾, G.Menichetti^(1,2), L.Buoni⁽¹⁾, S.Pace^(2,4), V.Mišeikis^(2,4), A.Pitanti^(1,3), D.Pisignano^(1,3), C. Coletti^(2,4), A. Tredicucci^(1,3) and S. Roddaro^(1,3)


- (1) Department of Physics "E. Fermi", University of Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy
- ⁽²⁾ Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- (3) NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, P.za S. Silvestro 12, 56127 Pisa, Italy
- (4) Center for Nanotechnology Innovation IIT@NEST, Piazza San Silvestro 12, 56127 Pisa, Italy gaia.ciampalini@iit.it

Van der Waals (vdW) heterojunctions between graphene and transition metal dichalcogenides (TMDs) are a key building block of devices based on two-dimensional crystals. Their stacking sequence is generally believed to crucially affect their behaviour as contacts in field-effect transistor (FET) [1]. We experimentally and theoretically investigate how a TMD can screen graphene even when it would not be expected to. Here, we demonstrate a peculiar architecture consisting of a MoS₂ FET with graphene contacts (1st configuration), where each graphene contact can act itself as a FET (2nd configuration) [2]. In the current study, both MoS₂ and graphene were synthesized by chemical vapor deposition (CVD) in a monocrystalline form. Charge transport measurements were performed in both configurations. MoS₂ FETs show highly linear IV characteristics and a mobility up to 8.6 cm²/Vs, while graphene stripes display quenched n-type conduction depending on the MoS₂ overlay coverage percentage. Materials properties are tracked at each step of fabrication by photoluminescence (PL), and Raman spectroscopies. The latter reveal a charge transfer within the heterojunctions [3-4]. Ab initio numerical calculations give strong indications that the observed electron transport suppression is caused by a significant density of sulfur vacancies in MoS₂.

References

- [1] D. Stradi et al., Nano Lett., **17** (2017) 2660.
- [2] G.Ciampalini et al., arXiv:2108.02116 (2021).
- [3] A.Michail et al., Appl. Phys. Lett., 108 (2016) 173102.
- [4] J.E. Lee et al., Nat. Commun., 3 (2012) 1024

Figures

Figure 1: a) Optical image and schematic of the device in both configurations. b) Electron transport suppression. Inset shows ab initio results.