Strange metal behavior of the Hall angle in twisted bilayer graphene Presenting Author Marc Bockrath¹

Rui Lyu¹, Zachary Tuchfeld¹, Nishchhal Verma¹, Haidong Tian¹, Emilio Codecido¹, Kenji Watanabe², Takashi Taniguchi², Chun Ning Lau¹, Mohit Randeria¹

¹Department of Physics, The Ohio State University, Columbus, OH 43210, USA

²National Institute for Materials Science, Namiki Tsukuba Ibaraki 305-0044 Japan

Bockrath.31@osu.edu

Twisted bilayer graphene (tBLG) with interlayer twist angles near the magic angle ~1.08° hosts flat bands and exhibits correlated states including Mott-like insulators, superconductivity and magnetism. We will discuss our recent measurements on a tBLG device with a twist angle of 0.93°, below the magic angle. We find in addition to Mott-like insulator and superconducting states near half filling, evidence for a novel correlated state at five electrons/moiré unit cell. Our results reveal that the magic range of tBLG is in fact larger than what is previously expected, and provide a wealth of new information to help decipher the strongly correlated phenomena observed in tBLG. Moreover, we will discuss combined temperature-dependent transport measurements of the longitudinal and Hall resistivities in close to magic-angle tBLG. While the observed longitudinal resistivity follows linear temperature *T* dependence consistent with previous reports, the Hall resistance shows an anomalous *T* dependence with the cotangent of the Hall angle $\sim T^2$. Boltzmann theory for quasiparticle transport predicts that both the resistivity and the Hall angle cotangent should have the same *T* dependence, contradicting the observed behavior. This failure of quasiparticle-based theories is reminiscent of other correlated strange metals such as cuprates.

References

[1] Y. Cao et al., Nature, 556 (2018) 80.

[2] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature, 556 (2018) (2018).

[3] A. L. Sharpe, E. J. Fox, A. W. Barnard, J. Finney, K. Watanabe, T. Taniguchi, M. A. Kastner, and D. Goldhaber-Gordon, Science, 365 (2019) 605.

Figures

igure 1: Hall angle cotangent temperature dependence. (ain panel: Hall angle cotangent change from its low emperature value versus *T*², for three different samples riangles, squares, and circles). Filled symbols indicate data aken near half-filling, while open symbols indicate data taken way from half-filling. Data represented by squares and iangles are vertically offset for clarity. Dashed lines show linear ts to the half-filling data. Inset: measured change in the Hall ngle cotangent vs. *T* near half-filling for one sample (squares) n a linear scale. Blue line: theory.

Graphene2021