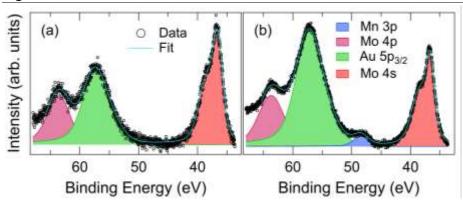
## Structural and Electronic Properties of Mn Implanted MoS<sub>2</sub>

## Harsh Bana<sup>1</sup>


Pin-Cheng Lin<sup>1</sup>, Renan Villarreal<sup>1</sup>, Zviadi Zarkua<sup>1</sup>, Manuel Auge<sup>2</sup>, Hans Hofsäss<sup>2</sup>, Antonio Tejeda<sup>3</sup>, Giovanni Di Santo<sup>4</sup>, Luca Petaccia<sup>4</sup>, Ezequiel Tosi<sup>4</sup>, Paolo Lacovig<sup>4</sup>, Silvano Lizzit<sup>4</sup>, Matz Nissen<sup>5</sup>, Ivan Baev<sup>5</sup>, Michael Martins<sup>5</sup>, Francesco Tumino<sup>6</sup>, Andrea Li Bassi<sup>6</sup>, and Lino M. C. Pereira<sup>1</sup> <sup>1</sup>Quantum Solid-State Physics, KU Leuven, 3001 Leuven, Belgium <sup>2</sup>Institute of Physics, University of Göttingen, Göttingen 37077, Germany <sup>3</sup>Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, 91405 Orsay, France <sup>4</sup>Elettra Sincrotrone Trieste, Strada Statale 14km, 163.5, 34149 Trieste, Italy <sup>5</sup>Universität Hamburg, Institut für Experimentalphysik, 22761 Hamburg, Germany <sup>6</sup>Department of Energy, Politecnico di Milano, Milan, Italy harshvardhan.bana@kuleuven.be

2-dimensional molybdenum disulfide (MoS<sub>2</sub>) is an intrinsically non-magnetic semiconductor. Introducing and controlling magnetism is critical in order to explore MoS<sub>2</sub> in spintronic and quantum technologies [1]. Various transition metal dopants have been predicted to induce robust ferromagnetic coupling [2] in MoS<sub>2</sub>, with Mn and V identified as the most promising candidates [1,2]. Various approaches to magnetically dope MoS<sub>2</sub> have arguably been limited in terms of reproducibility, scalability and control over the doping process (dopant concentration and incorporation configuration).

Here, we present an in-depth study of the effects of Mn doping using ultra-low energy (ULE) ion implantation [3] on the structural and electronic properties of single-layer MoS<sub>2</sub> (supported on Au(111)[4]). Our ULE implantation approach allows precise tuning of the kinetic energy of Mn ions, providing control over the form of incorporation and concentration while preserving the structural and electronic properties. Samples spanning different implantation parameters (fluence, energy and temperature) were studied via synchrotron-based X-ray photoelectron spectroscopy (XPS), angle-resolved photoelectron spectroscopy, X-ray absorption near edge spectroscopy and Raman spectroscopy. Mn implantation results in an increase in surface defects, however, the electronic structure of MoS<sub>2</sub> is preserved. A significant fraction of the implanted Mn atoms pass through (rather than being incorporated in the MoS<sub>2</sub> layer) and get trapped at the MoS<sub>2</sub>-Au interface thus modifying the charge transfer from Au to MoS<sub>2</sub> and resulting in Fermi-level unpinning. This work forms the basis for further studies on the magnetic and spintronic properties of magnetically doped MoS<sub>2</sub>.

## References

- [1] X.-L. Fan et al., Nanoscale Research Letters, 11(1) (2016) 12
- [2] A. Ramasubramaniam and D. Naveh, Physical Review B, 87 (2013) 195201
- [3] P.-C. Lin, R. Villarreal, H. Bana et al., ACS Nano, 15 (2021) 5449
- [4] F. Tumino et al., Nanoscale Advances, 1 (2019) 643



**Figure 1:** High-resolution XPS measurement performed at 400 eV photon energy along with the resulting fit (line) and the deconvoluted components (solid areas) for (a) pristine MoS2 and (b) ULE Mn implanted MoS<sub>2</sub> showing the Mn 3p core level.

## Figures