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The recent discovery of Dirac and Weyl semimetals (DWSMs) has provided a rich
arena for probing the exotic electrodynamic properties of 3D gapless electrons,
including their unique topological features [1]. Several types of gapless systems
featuring Dirac or Weyl points in the three-dimensional (3D) momentum space have
been observed experimentally (e.g. see Ref. [2]). The simplest DWSMs are 3D
analogues of graphene, exhibiting two- or four-fold degenerate linear-band
touching at the Fermi level, with isotropic velocities, and a possible replication into
disjoint momentum-space valleys. Their point-like Fermi surface is protected against
band gap opening due to either topological constraints (for Weyl systems with
broken time-reversal (𝒯) or inversion symmetries (𝒫)) or crystal symmetries (for
𝒯𝒫-symmetric Dirac systems). Different DWSMs’ varieties are depicted in Figure 1.

INTRODUCTION

DISORDERED DIRAC/WEYL SEMIMETALS

STATISTICAL INSIGNIFICANCE OF RARE-REGIONS?
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Figure 1: Depic,on of the different types low-energy band structures which
can happen in 3D four-band electronic systems. From le> to right: Dirac
Semimetal, Magne,c Semiconductor, Nodal-Point Weyl and Nodal-loop Weyl
Semimetal. In M. Koshino and I. F. Hizbullah, Phys. Rev. B 93 045201 (2016).

Similar to graphene, a clean DWSM is a semimetal with an electron density of states
(DoS) vanishing as 𝜌 𝐸 ∝ 𝐸 − 𝐸𝐹 2, near the node. This character crucially
differentiates the dc-transport properties from those of an ordinary (diffusive)
metal. An outstanding question is whether the semi-metallic phase survives the
ubiquitous presence of disorder or impurities. Fradkin’s early result [3] indicated
weak random potentials as irrelevant perturbations in 3D nodal semimetals, which
would suffer a non-Anderson semimetal-to-metal transition at finite disorder
strength – this is the Quantum-Criticality (QC) picture, shown in the upper Figure 2.

The QC picture was more recently put into question by deeper analysis, which
considered the effects of zero-energy bound-states which can appear at either fine-
tuned impurities or rare-regions of a disordered landscape [4]. It was argued that
these effects destabilise the semi-metal phase even for weak uncorrelated scalar
disorder, provided the local potential’s distribution is unbounded. This Avoided-
Quantum-Criticality (AQC) picture is supported by numerical simulations [7,8] and
depicted in the lower Figure 2.

Figure 2: Depic,on of the QC (upper
arrow) and AQC (lower arrow) for the
phase-diagram of a disordered DWSM.

Granted their existence, the statistical significance of rare-region states for the bulk
DoS of a DWSM have since been enquired by more sofisticated analytical means.
These led to contradictory conclusions that either disprove [5] or support [6] the
AQC paradigm. This state of affairs evidences the subtle issues that appear when
the stability of DWSM phases is to be acessed.

In this work, we show that diluted random spherical impurities can lead to a finite
zero-energy density of states (DoS) in a 3D Dirac system, destabilizing the semi-
metallic node for arbitrary small impurity concentration [10].

SIMILAR VS DIVERSE IMPURITIES

Zero-energy bound states appear only for statistically insignificant fine-tuned scalar
impurities - 𝐽𝑗 𝑏𝜆 = 0 - where 𝑏/𝜆 are the impurity radius/strength. It was argued
[4] that, near these critical values (“near-critical impurities”) the sharp low-energy
resonances preceeding the bound states were enough to lift 𝜌 0 . However, this
turns not to be the case [5,10] - individual resonances due to a dilute set of identical

Figure 3: (a) Motion of energy levels
triggered by a given central impurity, in
terms of its scattering phase-shifts. (b)
Plots of Δ𝜌!"#/%(𝐸, 𝑢) obtained using FSR
for selected deviations relative to the
critical 𝑢& = 𝜋. The inset shows the plots
to have a zero pinned to the node.

The change in the DoS due to dilute impuri^es (for fixed impurity parameter
u=λb) in Figure 3a was calculated using Friedel’s Sum rule (FSR) — the change in
the extensive DoS is given as a deriva^ve of the scacering phase-shids of a single
impurity:

Our interest is not on iden^cal impuri^es, but rather impuri^es of random
strengths. In most instances, such case can be obtained simply by averaging the
FSR over 𝑢 (and include a concentra^on factor). However, if there is probability for
impurity configura^ons around a cri^cal 𝑢, this reasoning breaks down. Then the
scacering phase-shids become discon^nuous at the node (Levinson’s Theorem)
and endow zero-energy modes with sta^s^cal significance. This way the semimetal
phase is destabilized and gives way to a diffusive metallic phase.

To see this emergence of sta^s^cal weight, one cannot use FSR directly, but
needs to go back to its deriva^on. For a DSM, one considers a single short-range
impurity inside a finite spherical volume. The phase-shids induced in the spherical
scacering states by the impurity, translate into an 𝐸-dependent shid of the
allowed energy levels. This mo^on of levels is related with the varia^on in the
number of states inside a spectral window and, thus also the change in the DoS. A
scheme of the argument is shown in Figure 3a and further details are found in [10].

CONFIRMATION BY LATTICE SIMULATIONS
In order to test our analytical theory, we performed ultra-high resolution
simulations in lattices of up to 536 million orbitals, far beyond any previous work in
3D Dirac systems (only possible in the Kernel Polynomial Method, KPM,
implementation of Quantum KITE [9]). For a direct comparison with the analytical
theory, we implemented a 4-band simple cubic Dirac semimetal lattice model with
8 valleys. Spherical impurities of random strength were then scattered inside the
simulated domain. Results are summed up in Figure 4 and caption (see also [10])

Figure 4: Le> Panel: Change in the DoS with a single near-cri,cal spherical impurity
inside the simulated domain. Colored curves are simulated results (with error bars),
while black curves are theory predic,ons corrected for the finite resolu,on (𝜂) of the
KPM simula,ons. For large enough spheres and simula,on domains, the single-impurity
results are fully repreoduced. Right Panel: Plot of 𝜌 𝐸 = 0 with several impuri,es
randomly placed inside the simulated supercell of 512' sites (without superposi,ons).
The grey line is the theory predic,on in the dilute regime - the first 4 points perfectly
follow the diluted regime predic,ons, with devia,ons for larger concentra,ons due to
mul,-impurity interference effects. The inset shows the converged 𝜌 𝐸 for 3
concentra,ons against the con,nuum theory’s predic,ons (black lines).

near-critical impurities always yield a zero DoS variation at 𝐸 = 0. 
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