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INTRODUCTION
Flexoelectricity is a property that could be very interesting at the nano scale for energy harvesting applications[1]. Developing new techniques for computing flexoelectricity tensor components for materials, such as graphene, is critical to finding a combination of materials with a relatively large flexoelectricity 
coefficient for future use. Javvaji et al. have recently reported[2] a novel method for the calculation of a flexoelectricity tensor component for trapezium-shaped graphene under a uniaxial stress by means of molecular dynamics (MD) software package LAMMPS, coupled with their own code implementing the 
Gaussian regularized charge-dipole model [3][4]. Motivated by this work, we compare the results obtained by using Javvaji’s method and those computed from our own homemade code. 

INTRODUCTION
When a strain gradient is applied to some possibly centrosymmetric dielectric, a strain gradient appears due to a phenomenon called flexoelectricity[1]. Being able to accurately compute flexoelectricity
coefficients is a foundation for finding a combination of materials with a relatively large global flexoelectricity coefficient for future use. Recently, B. Javvaji et al published a paper[2] on the calculation of
piezoelectricity and flexoelectricity coefficients for a patterned graphene, using molecular dynamics (MD) simulations coupled with a charge dipole model[3][4]. Reading this paper, however, it seemed to
us that some terms were missing in the computation of the forces with respect to what we usually use, i.e. terms coming from gradient of effective charges and dipoles that change when the positions of
atoms change. We thus decided to carry out the same simulations as Javvaji et al. to assess the importance of the missing terms and possibly provide improved numerical estimations. Hence, a
comparison between our results and those reported by Javvaji et al. are presented in the poster, along with some preliminary results on 2D MoS2.
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When a material is submitted to an external force, the resulting deformation gradient can break 
its spatial inversion symmetry and consequently induce a change of the polarization.

(a)(c) non-deformed 2D structure of elementary charges. When the geometric centers of positive 
and negative charges coincide, the net dipole moment of the unit cell is zero. (b)(d) The material is 
deformed by an external force, the strain-gradient induces an uncompensated dipole moment via 
the flexocoupling mechanism.

Figure 1. The origin of flexoelectric effects  in solids.

The total polarization in an electromechanical system can be expressed as follows:

flexoelectricity

where, 𝑒𝑖𝑗𝑘 is a piezoelectricity tensor, 𝜒𝑖𝑗 is the dielectric susceptibility, 𝑢𝑗𝑘 the symmetric strain 

tensor and 𝑢𝑗𝑘,𝑙 the strain gradient. 𝜇𝑘𝑙𝑖𝑗 is the flexoelectricity tensor. The last term  is the direct 

flexoelectric effect written using a symmetrized strain tensor.

𝑢𝑗𝑘 = Τ𝑈𝑗𝑘 + 𝑈𝑘𝑗 2

In the charge dipole model, each atom is supposed 
to carry an effective charge q and dipole moment p. 
The total electrostatic interaction energy E is 
expressed as

Fig. 2 Schematic representation of

atom in charge-dipole scheme

Fig. 3 The five types of energy 

contribution in charge dipole scheme. 

where, 
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𝑇𝑞−𝑞, 𝑇𝑞−𝑝 and 𝑇𝑝−𝑝 are interaction 
tensors, between point charges and 
dipoles, that diverge when 2 atoms are 
too close. In order to overcome this, 
the tensors are regularized by 
convolution with a radial Gaussian 
function[3][4], i.e
point charges ⇒ Gaussian charges

As Javvaji et al. we use the AIREBO many-body potential to describe the covalent and van der 
Waals bonds between carbon atoms. This potential has been used by many other authors to 
predict some physical and chemical properties of various carbon materials. The AIREBO 
potential consists of three terms:

𝐸𝐿𝐽 is a Lennard-Jones 12-6 potential term, 𝐸𝑡𝑜𝑟 is a 
single-bond torsion term and 𝐸𝑅𝐸𝐵𝑂 is composed of 
interatomic repulsion ϕR and attraction terms ϕA. The 
bond order function 𝑏𝑖𝑗 includes the many-body effects, 

where 𝑏𝑖𝑗
𝜎−𝜋 depends on the atomic distance and bond 

angle, 𝑏𝑗𝑖
𝑅𝐶 represents the influence of bond conjugation 

and 𝑏𝑗𝑖
𝐷𝐻 is a dihedral-angle term for double bonds.
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Calculation of piezoelectricity and flexoelectricity coefficient for trapezium graphene 

Fig. 4 (a) Atomic strain distribution for

trapezium-shaped graphene. (b) Atomic

strain along x axis for every atoms. x

denotes the atomic position along x axis.

The local atomic strain Ӗ𝜀𝑎𝑡 for every atom is given as Ӗ𝜀𝑖
𝑎𝑡 =

1

2
[( ധ𝐹𝑖)

𝑇 ധ𝐹𝑖 − Ӗ𝐼]

where ധ𝐹𝑖 is the deformation gradient of atom 𝑖 and Ӗ𝐼 stands for identity matrix. The ധ𝐹𝑖 tensors
were calculated according to a method reported in paper[5]. 

Table 1 : Comparison of piezoelectric and 

flexoelectricity coefficient between results 

reported by B. Javvaji and present 

calculated result. 

Fig. 7 Induced-field deflection in MoS2

nanoribbon, subjected to a 2.83 V/nm 

external electric field, with the nanoribbon 

fixed at its left edge. 

Fig. 8 the variation of polarization along 𝑥
axis as a function of second order gradient 

of transformation 𝐺 1,3,3 = 𝑢13,3

The Gaussian regularized charge dipole model is adopted to calculate the polarization
distribution for an MoS2 nanoribbon with 732 atoms under an electric field[6].

We expect to extend our current method to combinations of monolayers of various 2D 

materials for the computation of their flexoelectricity tensor components.

Perspectives: Calculation of a flexoelectricity coefficient for MoS2

Fig. 5 Polarization as a function of strain

(a) and strain gradient (b), respectively.

Slopes stand for piezoelectricity(a) and

flexoelectricity(b) coefficient.

B. Javvaji present result

piezoelectric 
coefficient
(C/m2) 0.08013 0.0574

flexoelectric 
coefficient
(nC/m) -0.789886 -0.0198
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