

<u>ABSTRACT</u>: It has been shown theoretically and experimentally that twisted bilayer graphene (TBG), forming Moiré patterns, confine electrons in a tunable way as a function of the rotation angle [1-3]. The discovery of correlated insulators and superconductivity in 2018 [3] at so-called "magic angles" has stimulated an avalanche of experimental and theoretical activities. In the framework of the Kubo-Greenwood formula for the conductivity, we present tight-binding (TB) calculations of quantum diffusion properties in TBG at various rotation angles θ [4,5]. We analyze in particular the effect of static defects, the effect of and electric bias. One of the main results is that flat-bands induce a breakdown of the standard Boltzmann theory of transport.

This anomalous quantum transport in flat-bands can exist in other systems like Quasicrystals [6] and flat-bands induced by defects in graphene [7,8].

Effect of an electric bias on bands [4]

A difference $\Delta \varepsilon$ between the on-site energies of layer 1 and layer 2 \Rightarrow Difference $\Delta E_{\mathbf{D}}$ between the two corresponding Dirac energies

(n,m)	heta (°)	N
(1,3)	32.20	52
(5,9)	18.73	604
(2,3)	13.17	76
(3,4)	9.43	148
(6,7)	5.08	508
(8,9)	3.89	868
(12, 13)	2.65	1876

TB 4 flat-bands in TBG (25,26) (meV) ·ΔE_D E_{DI} $--\Delta \varepsilon = 0$ (Π)

Microscopic conductivity (static defects) [5]

Microscopic conductivity σ_M is a good estimation of room temperature conductivity (without quantum corrections)

With defects (vacancies) located in layer 2 only:

Continuous model:

TB calculations: For Fermi energy E closed to Dirac energy $(E_D = 0), \sigma_M \text{ is almost}$

Quantum diffusion: Boltzmann and non-Boltzmann terms [4]

Kubo-Greenwood dc-conductivity
$$\sigma_{xx}(E_{\rm F},\tau) = \frac{e^2}{S}n(E_{\rm F})\mathcal{D}(E_{\rm F},\tau)$$

Diffusivity $D(E_{\rm F},\tau) = \frac{1}{2\tau^2}\int_0^\infty \Delta X^2(E_{\rm F},t) e^{-t/\tau} dt$

Relaxation time approximation: Scattering time (defect or phonon): τ

Mean square spreading: $\Delta X^2(E, t) = \left\langle \left(X(t) - X(0) \right)^2 \right\rangle_E$ $\Delta X^{2}(E,t) = 2\hbar^{2} \left\langle \sum_{n'} \left[1 - \cos\left((E_{n} - E_{n'}) \frac{t}{\hbar} \right) \right] \frac{\left| \langle n\vec{k} | V_{x} | n'\vec{k} \rangle \right|^{2}}{(E_{n} - E_{n'})^{2}} \right\rangle_{E_{n} = E} = V_{B}^{2} t^{2} + \Delta X_{NB}(E,t)$ Velocity: $V_x = \frac{1}{i\hbar} [X, H] \rightarrow \text{Diagonal terms (Boltzmann): intra-bands}$

Non diagonal terms (Non Boltzmann): inter-bands

Scattering time τ (s) τ (s)

 \Rightarrow For Twisted Bilayer Graphene (25,26), $\theta = 1.3^{\circ}$, close to magic angle, Non-Boltzmann terms dominate in the conductivity

SUMMARY: > A applied **bias potential** –or and an asymmetric doping between the two layers– reduces the velocity of Dirac-bands in TBG \sim Conductivy of TBG, with an asymmetric distribution of states defects between the two layers, varies like θ^2

> Non-Bolzmann terms (inter-band hopping terms) dominate in the quantum diffusion in flat-bands in TBG

