

GRAPHENE AND 2DM VIRTUAL CONFERENCE & EXPO

Wafer-scale inspection of graphene conductivity by Terahertz near-field scanning: As-grown on sapphire and after transfer to SiO_2/Si

S. Sawallich^{1,4}, A. Michalski¹, S. Krotkus², H. Pandey⁴, K. Satender⁴, M. Heuken², B. Conran³, C. McAleese³, M. Nagel¹, M. C. Lemme⁴ 1) Protemics GmbH, Aachen, DE – 2) AIXTRON SE, Aachen, DE – 3) AIXTRON Ltd, Cambridge, UK – 4) ELD, RWTH Aachen University, DE

> Fig. 1) Spatially resolved transmission amplitude across a 2" graphene layer on Si.

Method

- THz time-domain spectroscopy (THz-TDS) in transmission configuration based on an optical pump/probe scheme driven by an ultra short pulse laser as depicted in Fig. 2.
- THz near-field detection based on photo-conductive micro-

Motivation

- Terahertz (THz) spectroscopy is one of the leading methods in terms of measurement speed and accuracy for contact-free **mapping of sheet resistance** and carrier mobility of large area graphene or other 2D materials [1].
- THz near-field inspection provides accurate measurements of graphene layers on various THz transparent substrates at wafer-scale with µm spatial resolution.
- Enables graphene metrology and process surveillance by inspection directly after manufacturing, as well as quality inspection right before further processing and device fabrication.

Results

Spatially resolved graphene sheet conductivity maps, revealing graphene coverage and large-scale homogeneity as well as local variations and defects.

probes provides high spatial resolution [2].

Analytic description according to Tinkham formula and Drude-Model to extract graphene sheet conductivity σ_{sL} and carriermobility from THz data.

Fig. 2) Schematic of the THz near-field setup and the measurement scheme. Additional THz absorption by a graphene layer with conductivity σ_{SI} is measured as a reduction of the THz transmission amplitude T. A complete THz map is acquired by moving the sample laterally and recording THz data at each position.

- Inspection of graphene on Al_2O_3 growth substrate (see Fig. 3a) provides knowledge about quality on a single wafer as well as process variations across multiple samples.
- Measurements after graphene transfer to final SiO₂/Si wafers (see Fig. 3b) shows additionally introduced transfer-defects and yields local material properties independent of involved device fabrication processing steps.

Conclusion

- THz microprobe-based imaging systems enable the nondestructive and contact-free inspection of graphene for process monitoring and quality assurance.
- Near-field inspection achieves micron-scale resolution on wafer-scale areas at high measurement speeds.

Fig. 3) Graphene sheet conductivity results obtained via high-resolution terahertz near-field transmission measurements. CVD-graphene directly after growth on sapphire substrate (a) and the same graphene sheet after transfer to a SiO₂/Si substrate (b). The central graphene area shows mostly homogeneous conductivity around 1.5mS/D, with just a few point defects before transfer-typical additional defects like cracks and wrinkles after transfer onto the final substrate.

protemics	CONTACT	ACKNOWLEDGEMENT	REFERENCES
	Simon Sawallich sawallich@protemics.com www.protemics.com	German BMBF project GIMMIK (03XP0210)	 [1] J. D. Buron et al., Scientific Reports 2015, vol. 5, p. 12305 [2] M. Wächter et al., Applied Physics Letters 2009, vol. 95, no. 4, p. 041112