

GRAPHENE AND 2DM VIRTUAL CONFERENCE & EXPO

Synthesis of epitaxial monolayer Janus SPtSe

Roberto Sant*, M. Gay, A. Marty, S. Lisi, R. Harrabi, C. Vergnaud, M. T. Dau, X. Weng, J. Coraux, N. Gauthier, O. Renault, G. Renaud, M. Jamet * ESRF, the European Synchrotron, 38043 Grenoble, France

Janus Transition Metal Dichalcogenides (TMDCs)

Monolayer TMDCs whose chalcogen layers are of different chemical nature (e.g. XMY, M=metal, X=Se and Y=S) are said Janus after the biface Roman god¹. They can be prepared by selectively substituting the chalcogen atoms in the pristine TMDC topmost layer by annealing the material in a suitable gaseous precursor atmosphere of another chalcogen species. It turns out that the vertical mirror symmetry in the Janus TMDC is broken.

By *operando in situ* grazing incidence X-ray diffraction (GIXRD) at the BM32 beamline at ESRF, we could follow the structural transformation of a TMDC into a Janus material during the substitution process. Thanks to angle resolved X-ray photoemission (AR-XPS) our analysis is sensitive to the chemical depth profile.

Growth of PtSe₂ by selenization of Pt(111)³

PtSe₂ is grown on Pt(111) by a two-steps process²: Se deposition on Pt(111) 2) Annealing at 370°C

The as-grown PtSe₂ shows a very intense GIXRD pattern with a commensurate superstructure due to the exact **3:4** mismatch between Pt(111) and PtSe₂ lattice constants.

Our fitting and modelling of the GIXRD data shows that :

- PtSe₂ is **strained** (0.7%) - The interface coupling is strong (not Van der Waals!); both PtSe₂ and Pt(111) layers undergo significant distortions.

Experimental and theoretical structure factors in reciprocal space

h=k

Distorted (fit output)

Radial scan and in-plane sector map of the reciprocal space after PtSe₂ growth

Transformation of PtSe₂ into Janus SePtS by sulfurization in H₂S atmosphere⁴

Se in PtSe₂ can be replaced by S by supplying H₂S gas at a suitable temperature (sulfurization) :

I – a pre-annealing in vacuum creates defects and vacancies in PtSe₂.

II – H₂S supplies S to replace Se.

III – Suitable T allows Se-by-S substitution in the top chalcogen layer but not in the bottom one.

 $H_2S, T = 350^{\circ}C$

CONTACT PERSON

¹Lu, A.-Y., et al., "Janus monolayers of transition metal dichalcogenides", Nat. Nanotech., 2017.

Roberto Sant roberto.sant@esrf.fr ²Wang, Y., et al., "Monolayer PtSe2, a new semiconducting transition-metaldichalcogenide ...", Nano Lett., 2015.

³Sant, R., "Synchrotron x-ray exploration of growth and structure in 2D dichalcogenides", PhD Thesis, 2019

⁴Sant, R., et al. "Synthesis of epitaxial monolayer Janus SPtSe.", submitted, 2020.

