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Exfoliated MoSe2 flakes, suspended

over large-area (175 µm2) holes
Measurements performed on >10 samples with 1 – 10L, 

including a monolayer and three bilayers

Non-monotonic thermal conductivity

as a function of number of layers

INTRODUCTION
How does MoSe2

thermal conductivity depend on thickness?

This question is still debated in the literature:

[1],  [2],  [3],  [4]

We use Raman Thermometry to measure the 

in-plane thermal conductivity (κ) 

as a function of thickness (d)

FABRICATION

1L 2L

3L 5L

Exfoliation Dry-Transfer Samples (scale bars = 50 µm)

Au-coating the substrates enhances MoSe2 adhesion,

improving the transfer yield on 15 µm holes

RAMAN THERMOMETRY

RESULTS & DISCUSSION

CHARACTERIZATION

CONCLUSIONS & OUTLOOK

2-Laser Raman Thermometry:

2LRT
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1-Laser Raman Thermometry:

1LRT
The Raman peak of A1g

mode depends on 

temperature (T)

A CW laser heats 

the centre of the 

suspended flake

We monitor ΔT

(from the peak shift) 

vs. incident power

We retrieve thermal conductivity:
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The 

suspended 

monolayer

absorbs ~9.5% 

of light

1 3 5 7 9
0

25

50

75

100

d
T

/d
P

a
b

s
* 

d
 (

K
*n

m
/m

W
)

Number of Layers

5 10 150

50

100

150

200

0
5L

2L

D
T

 (
K

)

Pabs (mW)

1L

Highly 

reproducible κ

for samples 

with equal 

number of 

layers

1LRT suggests a 3-fold

decrease in κ from 5L to 1L!

Triangular profiles 

indicate steady-state

2LRT confirms a different 

κ for samples with 

2L and 4L

Perfect heat sink at the 

edge of the hole

Normalized by A and d

Normalized by A and d

Highlights

Thermal conductivity shows a 

non-monotonic trend with thickness 

(or number of layers)

Thickness could serve as an important design 

parameter in emerging applications:

• Heat Management

• Photothermal Therapy

• Thermoelectricity

DFT theory to fully understand the 

experimental observations

More measurements on a different 

monolayer sample and on thicker ones

This work has received funding from the European Union’s Horizon 2020 research 

and innovation programme under grant agreement No 804349 - CUHL
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