GRAPHENE AND 2DM VIRTUAL CONFERENCE & EXPO Thickness Dependent Thermal Conductivity of Suspended MoSe, 2D Crystals via Raman Thermometry D. Saleta Reig¹, S. Varghese¹, M. Sledzinska¹, E. Chávez-Ángel¹, J. D. Mehew¹, A. Block¹, C. M. Sotomayor Torres^{1,2} and K. J. Tielrooij¹ ¹Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain ² ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain 532 nm Transmission Absorption Reflection Number of Layers Thickness confirmed with Raman Shift at ...& **AFM** Exfoliated MoSe₂ flakes, suspended over large-area (175 µm²) holes Measurements performed on >10 samples with 1 - 10L, including a monolayer and three bilayers Non-monotonic thermal conductivity as a function of number of layers INTRODUCTION How does MoSe₂ thermal conductivity depend on thickness? Thickness, d This question is still debated in the literature: [1], [2], [3], [4] We use Raman Thermometry to measure the in-plane thermal conductivity (κ) as a function of thickness (d) 238 240 ### Au-coating the substrates enhances MoSe₂ adhesion, **FABRICATION** improving the transfer yield on 15 µm holes **Dry-Transfer Exfoliation** Glass slide PDMS[®] PDMS/MoSe₂ Glass slide Exfoliation STAMP | RELEASE tape **PRESS** Au (50 nm) **GENTLY** Si₃N₄ (200 nm) 50 μm **PEEL OFF FLAKE SEARCH** 50 μm # RAMANTHERMOMETRY RESULTS & DISCUSSION 1LRT suggests a 3-fold decrease in κ from 5L to 1L! suspended monolayer The Raman peak of A₁₀ mode depends on temperature (T) A CW laser heats the centre of the suspended flake We monitor **△***T* (from the peak shift) vs. incident power 242 Raman Shift (cm⁻¹) 1LRT Normalized by A and d _{abs} (μW) Number of Layers Highly reproducible *k* for samples with equal number of layers # 2LRT 405 nm # We retrieve thermal conductivity: $\kappa =$ $2\pi d$ dT/dP_{abs} ### Triangular profiles indicate steady-state 2LRT confirms a different κ for samples with 2L and 4L Perfect heat sink at the edge of the hole ### low power 242 240 Raman Shift (cm⁻¹) **Thickness** CHARACTERIZATION The suspended monolayer absorbs ~9.5% of light Normalized Intensity # CONCLUSIONS & OUTLOOK Thermal conductivity shows a non-monotonic trend with thickness (or number of layers) Thickness could serve as an important design parameter in emerging applications: - Heat Management - Photothermal Therapy - Thermoelectricity **NEXT** STEPS... DFT theory to fully understand the experimental observations More measurements on a different monolayer sample and on thicker ones (X/W) 2 101 bilayer samples Number of Layers t-layer samples 9 # David Saleta Reig ## REFERENCES This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 804349 - CUHL - [1] Bae, J. J., et. al. Nanoscale, 9(7), 2541-2547, (2017) - [2] Gabourie, A. J., et. al. 2D Materials, (2020) - [3] Ma, J. J., et. al. Physical Chemistry Chemical Physics, 22(10), 5832-5838, (2020) - Zobeiri, H., et. al. International Journal of Heat and Mass Transfer, 133, 1074-1085 (2019)