

GRAPHENE AND 2DM VIRTUAL CONFERENCE & EXPO

Thickness Dependent Thermal Conductivity of Suspended MoSe, 2D Crystals via Raman Thermometry

D. Saleta Reig¹, S. Varghese¹, M. Sledzinska¹, E. Chávez-Ángel¹, J. D. Mehew¹, A. Block¹, C. M. Sotomayor Torres^{1,2} and K. J. Tielrooij¹ ¹Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain ² ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain

532 nm

Transmission

Absorption

Reflection

Number of Layers

Thickness

confirmed with

Raman Shift at

...& **AFM**

Exfoliated MoSe₂ flakes, suspended over large-area (175 µm²) holes

Measurements performed on >10 samples with 1 - 10L, including a monolayer and three bilayers

Non-monotonic thermal conductivity as a function of number of layers

INTRODUCTION How does MoSe₂ thermal conductivity depend on thickness?

Thickness, d

This question is still debated in the literature: [1], [2], [3], [4]

We use Raman Thermometry to measure the in-plane thermal conductivity (κ) as a function of thickness (d)

238

240

Au-coating the substrates enhances MoSe₂ adhesion, **FABRICATION** improving the transfer yield on 15 µm holes **Dry-Transfer Exfoliation** Glass slide PDMS[®] PDMS/MoSe₂ Glass slide Exfoliation STAMP | RELEASE tape **PRESS** Au (50 nm) **GENTLY** Si₃N₄ (200 nm) 50 μm **PEEL OFF FLAKE SEARCH** 50 μm

RAMANTHERMOMETRY

RESULTS & DISCUSSION

1LRT suggests a 3-fold

decrease in κ from 5L to 1L!

suspended

monolayer

The Raman peak of A₁₀ mode depends on temperature (T)

A CW laser heats the centre of the suspended flake

We monitor **△***T*

(from the peak shift) vs. incident power

242 Raman Shift (cm⁻¹)

1LRT

Normalized by A and d

_{abs} (μW)

Number of Layers

Highly

reproducible *k*

for samples

with equal

number of

layers

2LRT

405 nm

We retrieve thermal conductivity: $\kappa =$ $2\pi d$ dT/dP_{abs}

Triangular profiles indicate steady-state

2LRT confirms a different κ for samples with 2L and 4L

Perfect heat sink at the edge of the hole

low power

242

240

Raman Shift (cm⁻¹)

Thickness

CHARACTERIZATION

The

suspended

monolayer

absorbs ~9.5%

of light

Normalized Intensity

CONCLUSIONS & OUTLOOK

Thermal conductivity shows a non-monotonic trend with thickness (or number of layers)

Thickness could serve as an important design parameter in emerging applications:

- Heat Management
- Photothermal Therapy
- Thermoelectricity

NEXT STEPS... DFT theory to fully understand the experimental observations

More measurements on a different monolayer sample and on thicker ones

(X/W) 2 101

bilayer

samples

Number of Layers

t-layer

samples

9

David Saleta Reig

REFERENCES

This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 804349 - CUHL

- [1] Bae, J. J., et. al. Nanoscale, 9(7), 2541-2547, (2017)
- [2] Gabourie, A. J., et. al. 2D Materials, (2020)
- [3] Ma, J. J., et. al. Physical Chemistry Chemical Physics, 22(10), 5832-5838, (2020)
- Zobeiri, H., et. al. International Journal of Heat and Mass Transfer, 133, 1074-1085 (2019)

