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Graphene chemical derivatives: from synthesis to applications .
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Carboxylated (C-xy) & Carbonylated (C-ny) graphenes:

Graphene chemical derivatives: point of interest
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v’ versatile platform for the synthesis of graphene layers * Variable chemical reactivity = GO 0.3-0.6 -
with the intended composition of organic groups = Easiness of the subsequent grafting ©o. - Sheet resistance and the corresponding
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The gas-sensing performance of C-ny graphene layer. (a) The resistance transient of the exemplary sensor exposed to NH; in humid (upper
curve) and dry (lower curve) air. (b) The dependence of median chemiresistive response of sensors in the on-chip multisensor array on the
concentration of NH; in humid and dry air. (c) The values of median chemiresistive response of sensors in the on-chip multisensor array to
various analyte VOCs: water (H,0), NH; in dry and humid air (Am and Am/H,0)), ethyl alcohol in dry and humid air (EtOH and EtOH/H,0),
acetone in dry and humid air (Ace and Ace/H,0), and CO,. (d) The results of the recognition of the studied analyte VOCs using LDA the red-
highlighted zone indicate a location of analytes in dry air background.

ey

How to obtain?

M. K. Rabchinskii et al. Carbon, 2020, DOI: 10.1016/j.carbon.2020.09.087

The effect of derivatization?

Carboxylated (C-xy) & Carbonylated (C-ny) graphenes:

C-xy: Photoinduced reduction of graphene oxide C-ny: Liquid-phase graphene oxide reduction using

Aminated graphene: GO treatment with hydrobromic acid & ammonia
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complex (indicated by blue color)
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