

Far-field excitation of single graphene plasmon cavities with ultra compressed mode volumes

Varun-Varma Pusapati¹, Itai Epstein^{1,9}, David Alcaraz¹, Zhiqin Huang^{2,3}, Jean-Paul Hugonin⁴, Xander M. Deputy ^{2,3}, Tatiana G. Rappoport ^{5,6}, Jin-Yong Hong ⁷, Nuno M. R. Peres^{5,8}, Jing Kong⁷, David R. Smith^{2,3}, Frank H. L. Koppens¹

¹ ICFO – Institut de Ciències Fotòniques, Spain.^{2,3} Duke Universidade Federal do Písica and QuantaLab, Universidade do Minho, Portugal.⁶ Universidade Federal do Rio de Janeiro, Brazil.⁷ Massachusetts Institute of Technology, USA.⁸ International Iberian Nanotechnology Laboratory (INL), Portugal.⁹ Department of Physical Electronics, Tel Aviv University, Israel

ABSTRACT

Acoustic graphene plasmons are highly confined electromagnetic modes carrying large momentum and low loss in the mid-infrared and terahertz spectra. However, until now they have been restricted mainly to micrometer-scale areas, reducing their confinement potential by several orders of magnitude. Using a graphene-based magnetic resonators, we realized single, nanometer-scale acoustic graphene plasmon cavities, reaching mode volume confinement factors of $\sim 5 \times 10^{-10}$. Such a cavity acts as a mid-infrared nanoantenna, which is efficiently excited from the far field and is electrically tunable over an extremely large broadband spectrum. Our approach provides a platform for studying ultra-strong coupling phenomena, such as chemical manipulation via vibrational strong coupling, as well as a path to efficient detectors and sensors operating in this long-wavelength spectral range.

INTRODUCTION

GRAPHENE PLASMON MAGNETIC RESONANCE CAVITIES (GPMRs)

EM waves that couple to electron oscillations in graphene when placed close to a metallic surface support highly confined asymmetric mode referred to as an acoustic graphene plasmon (AGP)^[1].

The AGPs exhibit extreme confinement in the mid-IR to THz spectrum with an in-plane confinement of almost 1/300 of $\lambda_0^{[2]}$ and can be vertically confined to as small as 1 atom thick ^[3].

We realized single, nanometer-scale AGP cavities by the generation of a graphene plasmon magnetic resonance (GPMR), which enables the far-field excitation of AGP cavities ^[4].

The GPMRs are formed by dispersing metallic nanocubes, with random locations and orientations, over a hexagonal boron nitride (hBN)/graphene van der Waals heterostructure.

3D Single Cube |Hz|

electric field lines around the graphene-nanocube The interface when imposed on the magnetic field lines form a loop that is correlated with a strong magnetic field in its center and has the shape of a magnetic dipole resonance.

Farfield illumination excites the GPMR patch antenna mode that is associated with excitation of AGP and shows linear dispersion.

Graphene edge

FARFIELD EXCITATION REVEALED BY FTIR EXTINCTION SPECTRA

BROAD BAND TUNABILITY AND ULTRA SMALL MODE VOLUMES

The Fourier-transform infrared spectroscopy (FTIR) extinction spectra measured from the device for different back-gate voltages tunes the plasmon resonance.

The scalable nature of the patch antenna can be observed in for different nanocube sizes, where a larger nanocube size corresponds to a larger

For 50nm cubes, the velocity of AGPs approaches the Fermi velocity and has a value of $\sim 1.42 *$ $10^{6} m/s$

Scattering resonances for a 2D simulated single GPMR structure for various Fermi energy levels correlate to the AGP resonances and they can be tuned just by carrier doping.

