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                              We characterize the topology and simulate the longitudinal and Hall conductivity of multilayers of graphene encapsulated with hexagonal 
                              boron-nitride [1-3]. Our model is based on DFT and captures the coupling between layers in a heterostructure. For graphene sitting on an hBN 
substrate, we can continuously tune the twist angle of each layer, and realize multiple moire patterns with different spatial ranges. We can further simulate two 
layers of hBN encapuslating one of graphene, with two moire patterns formed by lattice mismatch and relative twist angles. We develop linear scaling 
algorithms to be able to simulate the longitudinal conductivity as well as the Hall conductivity. Furthermore, when placed under a magnetic field, the system 
develops topologically non-trivial gaps. We are able to characterize the topology by efficiently compute the Chern number [4]. 
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The model [1] links the short-range stacking 
configurations with the large-ragen moiré 
pattern. It takes the parameters from DFT 
expansions and Wannier representations of the 
Bloch bands at low energy.
Expanded onto a lattice, the graphene layer 
acquires an effective Dirac mass comming from 
the hBN layer, plus pseudo-magnetic field from 
the strain.
The Hamiltonian is

We can vary the twist angle and follow the 
formation of a second Dirac point gap.

A graphene layer encapsulated with 
two layers of hBN will effectively 
have the contributions from both 
potentials, realizing a complex 
supermoiré pattern, which is under 
intensive study [2].

The size needed to reproduce the 
low-energy features of these 
supermoiré structures is very large, 
and the supermoiré patterns 
themselves are generally 
incommensurate [3].

We can compute the Kubo Hall conductivity 
and the Chern number on large moiré and 
supermoiré patterns.
The Chern number characterizes the topology 
of the gaps. These gaps come from Landau 
levels induced by magnetic fields, and also 
from secondary Dirac points (SDP) from the 
moiré pattern.

Landau fan plot
shows the influence of 
the SDP in a measure 
vs. electronic density.

* We have developed and composed very powerful methods to simulate 
very large moiré patterns that allows us to describe the physics at low 
energies.
* The effective model [1, 3] can succesfully capture the most relevant 
features of low angle twisted graphene heterostructures.
* The application of the KPM expansion to the computation of the Chern 
number [4] is efficient enough to characterize the topology of large, 
complex moiré patterns, even in the incommensurate limit. 

The Kernel Polynomial Method
expands any operator 
function [5] that depends on the
Hamiltonian and other parameters.

The recursion relation makes it 
very efficient, with linear scaling.

Typical operators are:

* the density  states

* the Green's functions (A and R)

* the projector over occupied bands.

With these tools we efficiently compute the Kubo conductivity [7]

and the local Chern marker [4, 6].

The Chern marker describes the topology for non-periodic systems.


