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Current saturation is a valuable alternative of bandgap engineering

to achieve high-gain graphene field effect transistors (GFETs) for RF

applications. One way to face this challenge is to use the hyperbolic

phonon polariton scattering mechanism that occurs in graphene
supported on boron nitride (hBN) substrate [1].
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Motivation

Current saturation measured for different gate voltages 

in the electron-doped regime (positive bias). From [1]

Saturation velocity is reached on high mobility graphene supported

on hBN at large doping when EF exceeds the optical phonon energy
ħωOP. In hBN, this is provided by the lower hyperbolic phonon-

polaritons ħΩI HPhP and hot electron cooling by the upper ħΩII HPhP

band in the 0.1-0.2 eV range.

Velocity saturation

Ballistic resistance HPhP scattering contribution

Diffusive term 

Intraband DC and RF characterization

Interband hyperbolic cooling RF GFET

Optimized  RF-GFET

Cut-off frequencies together with 

the model prediction. From [2]

Optical image of the 

RF GFET on h-BN with 
buried bottom gates

Carrier drift velocity simulated and the 

measure at n = 5x1012 cm-2 (black circles).

Very-high mobility devices such as hBN

encapsulated graphene lead to interband

Zener–Klein tunneling (ZKT) regime (over
ħΩII HPhP) [1] with a predicted fmax/fT > 5 [2].

The RF figure of merit increases from

fmax/fT ≈ 0.2 in the mobility-limited

regime, over fmax≈ fT in the velocity-

saturation regime [2].

Radiative cooling by HPhP can also be

achieved using thicker h-BN substrates

(tBN≥100 nm) [1,3] to overcome self

heating limitations [4].

Nonlinear current–field characteristics 

of the BLG on hBN transistor in the hole-

doped ZKT regime.

We anticipate the possibility of 𝒇𝒎𝒂𝒙 ≥ 𝟏𝟎𝟎 𝐆𝐇𝐳 [5] with an optimized

design (𝐿𝑐ℎ> 𝐿𝑠𝑎𝑡 ,𝑊𝑐ℎ < 𝑊𝑐𝑜𝑛𝑡𝑎𝑐𝑡 ) and operating bias conditions

(balance between ZKT and Drain doping) :

We also envision new perspectives “beyond GFETs”, beyond 100GHz using

plasma resonance devices [6] highly suitable for RADARs and GSM
applications operating in the sub THz domain.

Maximum oscillation frequency: 

𝑓𝑚𝑎𝑥 ≤ Τ𝑓𝑇 4𝑅𝑐𝐺𝑑𝑠 ≈ 10𝑓𝑇
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Noise temperature as a function of Joule heating 

with intraband e--e- interactions at low field and 

interband HPP emission at high field. From [1]
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A first attempt with high mobility graphene with

encapsulated graphene is consistent with the model.

Cut-off frequencies
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Gain tension : 

𝐴 =
𝐺𝑚
𝐺𝑑𝑠

≤
𝑉𝑠𝑎𝑡

Τ𝜎𝑧𝑘 𝐶𝑔µ − 2𝑎𝑉𝑠𝑎𝑡
≈ 10

Transit frequency:

𝑓𝑇 =
𝐺𝑚

2𝜋𝐶𝑔𝐿𝑊
=

𝑣𝑠𝑎𝑡
2𝜋𝐿

≈ 10 𝐺𝐻𝑧

Model taking into account the 3 contribution of current with no self heating :

Current Transconductance Gain Cut-off frequencies

DC, RF characterization and modelling of a GEFT with µ=3m²/V.s, 𝑣𝑠𝑎𝑡=2.5 105 m/s, 𝐿=2µm, 𝑊=40 µm, 𝑅𝑐=35 Ω, a=0.2, σ𝑧𝑘=0,3 mS
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