

Tunability of the Photoluminescence and Coupled Charge Transfer Dynamics in Monolayer MoS₂ Decorated with WS₂ Quantum Dots

Larionette P. L. Mawlong¹, Abhilasha Bora² and P. K. Giri^{1, 2}

¹Centre for Nanotechnology, ²Department of Physics, Indian Institute of Technology Guwahati, Guwahati -781039, India.

INTRODUCTION

Schematic illustration of the synthesis of WS₂ QDs and their decoration onto 1L-MoS₂

- **OD-2D Heterostructure.**
- **Tunablility of the photoluminescence (PL) of** the monolayer MoS₂ (1L-MoS₂).
- Using the four-energy level model, a detailed quantitative analysis involving coupled charge transfer was employed to explain the redshift and the systematic decrease in the intensity of peak $1L-MoS_2/WS_2$ QD the PL in heterostructure.

QD.

KPFM Study 500 nm

$$\boldsymbol{n}) = \frac{k_{tr}(\delta)}{(\Gamma_2 + \Gamma_3)} \frac{AG\gamma_{tr}}{(\Gamma_1(\delta) + k_{tr}(\delta))}$$

There is a distinct decrease in the work function of the 1L-MoS₂/WS₂ QD HS by 35 meV compared to 1L-MoS₂

CONTACT PERSON

Larionette P. L. Mawlong larionette@iitg.ac.in **Senior Research Scholar Centre for Nanotechnology Indian Institute of Technology** Guwahati

REFERENCES

Larionette P. L. Mawlong., et al., *Sci. Rep.*, 9, 19414 (2019).

