
 Compared to literature:
• Improved sensitivity

• Longer response time
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 New requirements in NO2 and NH3 detection [1]-[2]-[3]: 

detection limit up to 1 ppb and portable

 But usual sensors do not meet these specifications [4]

 Need to develop innovative sensors

 Graphene based sensor [5]: 

I − Context

Application Detection limit Response time Temperature

Environnemental 0,1 ppb Minutes RT

Automotive 1 ppm Up to 1 min Up to 600°C

Chemical 20 ppm Minutes Up to 500°C

Medical 50 ppb 1 min RT 0
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Detection limit of different sensor materials

Target = 1 ppb

Conducting polymers and SMO

Optical

• Conducting polymers and SMO are sensitive 

to the ppm with high energy consumption

• Optical techniques suffer from high operating 

costs and limited portability

• Highly sensitive to NH3 and NO2 (up to one molecule) with differentiated 

response

• Low cost and easy to build

 Gas environment:

1. NO2 or NH3 flow + N2 purge

2. Vacuum up to 10-7 mbar

3. Heated and passivated 

chamber

4. Electrical Measurements 

II − Experimental set-up & sensor design
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−
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 R = 2 x Rc + Rsheet x L/l

 Production using photolithography methods and graphene transfer:

Transmission Line Method (TLM) 

structure = graphene resistance

variation during gas exposure

 “Langmuir” adsorption-desorption model with 2 distinct adsorption sites [6].

 Surface diffusion model through crystalline defective sites [7].

 Conductivity evolution:
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III − Sensor performance
Pros:

• Sensitive to 1 ppb

• Repeatable measurement thanks to the 

experimental set-up

• Sensor easy to process and to use

Cons:

• Low response time, slow and complex kinetic

• Poor selectivity, the exposition to diluting 

gases (air, H2O, etc.) modify the sensor 

response

• Sensor reset and instabilities due the 

substrate
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 Wide sensitivity range:

From 1 ppb to hundreds of ppb

[8]-[9]

 Response time to 90% 

of the sensor 

response ≈ 5000 s

 To enhance graphene mobility and reduce instabilities:

 BN substrate (graphene structural equivalent, highly insulating)

IV − BN substrate
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Device fabrication using CVD sp2-hybridized BN 

produced at the ONERA
• 800 nm Ni(111)/120 nm YSZ/Si(111) substrate

• Continuous multilayers BN films

• Regular atomic planes over the entire surface and 

thickness

• Sensor production directly on the BN growth substrate

 A 300K [10]: 
• self-standing Gr : 200 000 cm2/V/s

• Gr/SiO2 : 20 000 cm2/V/s 

• Gr/BN : 140 000 cm2/V/s

 Expected [11]: 
• Sensitivity enhanced

• Shorter response time

• Substrate instabilities reduced

 Issues: few BN sources, no all-CVD devices

After processing:
• Gold electrodes stability

• BN not deteriorated 

• Graphene integrity 

preserved after the process

To do:
• Check BN insulating 

characteristics

• Experiment the device 

inside the gas chamber

 Graphene functionalization to improve sensor properties:

 Fluorination (collaboration with Uppsala University)

V − Graphene fluorination

 Expected [12]: 

• High electron affinity with the 

ammonia molecule 

• Enhanced sensitivity and 

selectivity

 Ionic-fluorination [13]: 

• Functionalization as a final step 

of the process/before gas 

experimentation

• Stable up to 200°C

 Electronic-fluorination has to be investigated [14]:

• XPS: Temperature stability and adsorption/desorption mechanism 

• Raman spectroscopy: time stability under vacuum and inert atmosphere

Perspectives
 Fluorographene gas sensor with Boron Nitride substrate and  

pbb sensitivity

 Device and process adaptable for the production of  various 

sensors with multilayer BN films on the growth substrate: Hall 

effect magnetometer, electric field sensor, etc.


