

MODELLING THE CHARGE-DENSITY WAVE STATE OF TaSe, WITH A TIGHT-BINDING MODEL

Will Luckin¹, Surani Gunasekera¹, Felix Flicker², Marcin Mucha-Kruczyński¹ ¹ University of Bath, Claverton Down, Bath, UK ² University of Cardiff, Cardiff, UK

TaSe2 is a layered transition metal dichalcogenide (TMD) that exhibits charge density waves. In order to describe this electronic phase in the bulk crystal, we construct an effective two band model for the Fermi level states.

3. METHODS

The tight-binding model is constructed in an orbital basis using a Slater-Koster parametrisation. The Slater-Koster method has two sets of free parameters: the (two-centre) hopping amplitudes between atomic orbitals and the overlap integrals that correct for the non-orthogonality of orbitals on neighbouring atoms. Stated thusly,

and the second s

1. WHY TASE₂?

TMDs are a large group of materials that consist of strongly bonded layers of atoms, each of which interacts with the others via the weak van der Waals interaction. Each of these layers are made of planes of transition metal atoms between two planes of chalcogens. Here we focus on bulk TaSe2 in the so-called 2H hexagonal structure, corresponding to the stacking of transition metal/chalcogen "sandwiches" as seen below.

Figure 1: The crystal structure of Tase2, with Ta atoms shown in grey and Se atoms in gold. Note how the unit cell, shown as the blue lines contains two "sandwiches" of three layers each.

$$H\left|n\right\rangle = E_n S\left|n\right\rangle$$

the problem consists of finding the matrices H, the Hamiltonian, and S, the overlap, and solving the eigenproblem. We consider each of the Ta atoms to contribute five d-orbitals, and each Se 3 p-orbitals. The Slater-Koster method, for this set of orbitals, yields 33 free parameters considering only on-site energies and first-nearest neighbours for each pair of non-equivalent atoms.

Using the orbital basis in the TB model we calculate the contribution of each orbital $|\psi_i\rangle$ to each eigenstate $|v_j\rangle$ as $|\langle\psi_i|v_j\rangle|^2$ for the Fermi bands. The contribution from the d_{z^2} orbitals dwarfs all others and justifies the use of an effective model in the basis of Bloch states constructed of these orbitals.

We then construct a tight-binding model considering only these two orbitals on each Ta atom. To

Figure 2: Fraction of total orbital contribution from the two isolated Fermi bands. These contributions dwarf that of any other orbital, justifying a two-orbital model.

TaSe2, like NbSe2, exhibits both commensurate and incommensurate charge density wave (CDW) states at around 100 K. Theoretical studies of NbSe2 by Flicker et al. revealed that the CDW transition is not driven by Fermi surface nesting, but instead by the momentum and orbital dependance of the electronphonon coupling [1]. Their two-orbital model of NbSe2 describes the effective coupling between the d3z2–r2 orbitals of the two inequivalent niobium atoms and captures well the electronic structure in the vicinity of the Fermi level. Here, we follow their approach and aim to construct a two-orbital model for 2H-TaSe2.

provide additional fitting

parameters, we extend the model to include fifth-nearest-neighbour hoppings in-plane. Additionally, we consider the hopping integrals themselves the free parameters, rather than using the Slater-Koster formalism, as this minimises unknowns. We fit to both ARPES and DFT data to accurately model the material, shown in Figure 3.

Figure 3: A fitted two-orbital model, shown in black, as compared to the ab initio calculations in red and ARPES measurements in yellow. This "hybrid" fitting approach yields accurate calculation of the CDW Q-vector.

2. AB INITIO CALCULATION

The tight-binding-0.2method used requires-0.3data to fit to in order to-0.4ascertain its free-0.5parameters (see-0.7Methods). For this we-0.8used density functional -0.9calculations, via-1.0

4. CHARACTERISING THE CDW STATE

The CDW state in 2H-TaSe2 has a Q-vector = $2/3\Gamma$ M, i.e. one can expect to see folding in the bandstructure translated by this nesting vector when in the CDW state [3].

Once the two-orbital fit has been completed, it can be used to calculate the electronic susceptibility using the electron-

QuantumEspresso [2].

The bandstructure produced is shown in black, *right.* We fit in the $k_z=0$ plane due to quasi-2d nature of TaSe₂. For fitting the two-orbital model we also use ARPES data below the Fermi energy to ensure an accurate model in a hybrid fit (see Methods) [3].

phonon coupling expression of Varma et al. [4]. This susceptibility, projected along the direction of momentum transfer in the CDW state, is sharply peaked along the direction of the CDW wavevector $Q = 2/3\Gamma M$, as seen with peaks in Figure 4.

Figure 4: Calculated general electronic susceptibility in the CDW state. Note the peak in intensity at $Q = 2/3\Gamma M$, where a particular phonon will soften to zero frequency at the transition temperature, locking in the lattice distortion and transitioning to the CDW state.

CONTACT PERSON

Please feel free to e-mail me!

Will Luckin, University of Bath <u>wl748@bath.ac.uk</u> <u>http://will.luckin.co.uk</u>

REFERENCES

[1] Felix Flicker and Jasper van Wezel. "Charge order in NbSe 2". In: Physical Review B 94.23 (Dec. 14, 2016), p. 235135.

[2] Paolo Giannozzi et al. "QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials". In: Journal of Physics: Condensed Matter 21.39 (Sept. 2009), p. 395502.

[3] Y. W. Li et al. "Folded superstructure and degeneracy-enhanced band gap in the weak-coupling charge density wave system 2H–TaSe2". In: Physical Review B 97.11 (2018).

[4] C. M. Varma et al. "Electron-phonon interactions in transition metals". In: Physical Review B 19.12 (June 15, 1979), pp. 6130–6141.

raphene Conline 2020