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Controlled formation of nanobubbles in graphene
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lon implantation in the ultra-low energy regime (10-100 eV):
controlled intercalation with minimal damage

ultra-low energy (ULE) ion implantation

Owing to its unrivaled elasticity and strength [1], graphene is able to hold matter at extreme
prgssures in the form of bubbles Wl.th dimensions down -to the nanomgter scale [2,3]. These | HV beam line : 1 ; g Ve ek, 2 4 , simulation of the ULE ion
unique bubbles offer new opportunities to explore chemistry and physics under the extreme mass separation " beam sweep A g I LR o M A Ol g™ A o T _ _

conditions that both graphene and the trapped matter are subject to, for example, high-pressure magnet . /| +30 Y RV Y e s 58 R R S Sl implantation for He, Ne and Ar
chemical reactions [4] and strain-induced pseudomagnetic fields [5]. A TN I 2N ". el & o L AR ions into graphene, for ion
While various approaches have been explored so far, they provide limited controllability, especially ' - £ B e s energies between 10 and 40 eV
on a large-wafer scale. Here we report on the controlled formation of noble gas (He, Ne, Ar) einzel lens / 2 :f’_ Sa B IR Rt 4 / (Cf tormalism in [7])
nanobubbles in graphene (on various substrates) using ultra-low energy (ULE) ion implantation [6]. & (neutral trap) 'sbstrate WEOX7 g e )

ULE ion implantation allows us to precisely tune the number of implanted ions and their kinetic N . quadrupole lens 30kV- U,
energy, which in turn controls the bubble formation efficiency and bubble density. | ! |

UHV chamber
deceleration stage

Our experimental approach is based on a wide range of characterization techniques (structural  einzel lens s et S simulation of the bubble
and electronic), including scanning tunneling microscopy and spectroscopy (STM/STS), current integrator : _' stabilityand morphology for
synchrotron-based angle-resolved photoemission spectroscopy (ARPES), Raman spectroscopy, ] ! S S e e e R i e =S

among others. These experimental studies are complemented by molecular dynamics (MD) l ; Bl e e S S S e S A S = He, Ne and Ar bUbeeSr for
calculations [3,7], which give insight into the bubble formation and stability mechanisms, and how R T R R e =S sraphene on Pt and on Cu (cf
they depend on gas species (e.g. He, Ne, Ar) and substrate (e.g. Cu and Pt). Our work is aimed to = = = formalism in [3])
establish a framework for the controlled formation of graphene nanobubbles at wafer scale.
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transmission versus disorder structural and electronic properties

® Nanobubbles are observed for
all implanted gases (He, Ne,
Ar)

scanning tunneling microscopy

Nanobubbles are stable for
graphene on Pt but not for
graphene on Cu
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Bubble density can be tuned
by implantation fluence
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molecular dynamics simulations: ' . Raman shift (cm-)
for all noble gases considered (He, Ne, Ar) there is an energy window A -
providing high transmission (i.e. efficient intercalation) ®* Disorder can be minimized and even avoided by implanting at low energy and low fluence

while avoiding vacancy formation

®* Bubbles can be formed while preserving high structural order and Dirac character of graphene
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