

GRAPHENE AND 2DM VIRTUAL CONFERENCE & EXPO

ABSTRACT

Controlling graphene's chemical potential is significant for photonic and plasmonic applications since this provides a way to modulate its optical properties at the core of tunable/reconfigurable devices [1]. In addition, chemical potential spatial control would allow us to engineer doping profile areas in graphene thus enabling the development of novel components without patterning the graphene sheet nor implementing complex matrices of electrodes [2, 3]. We here propose and characterize a structure to achieve spatial modulation of graphene's chemical potential by using charge transfer between graphene and transition metal oxide [4, 5]. Graphene is transferred onto a structure, which consists of a patterned 10nm-thick layer of tungsten oxide (WO3) deposited onto 90nm-thick silica layer on a silicon substrate. Depending on the supporting material, namely silica or tungsten oxide, graphene is expected to have a different chemical potential. Nano-XPS scans indeed suggest a chemical potential shift of 0.1eV between graphene areas in contact with either silica or tungsten oxide, which is further confirmed by Raman spectroscopy cartography. This approach paves the way towards an easy implementation of spatial doping modulation in graphene without patterning or chemical modification of graphene.

CONTEXT

- Optical conductivity depending on graphene's chemical potential [7]
- Modulation of plasmon dispersion and photon absorption with the chemical potential [1]
- Chemical potential spatial control for the development of non-Hermitian photonic devices [2] and plasmonic metasurfaces [3, 8] without graphene patterning or complex electrode implementation

CHARGE TRANSFER WITH WO₃

NANO-XPS MEASUREMENTS

- Measurements carried at ANTARES beamline of SOLEIL synchrotron [9]
- Excitation with focalized photon probe <1µm and selected energy hv
- WO₃ structures observed using tungsten core levels (W_{4f}) observed at hv=220eV
- Evidence of patterning obtained by scanning the probe over the surface
- Observation of graphene related carbon core level (C_{1s}) observed at hv=350eV
- Effect of WO_3 structures on C_{1s} core level position
- Energy shift of about 0.1eV between graphene on SiO_2 and graphene on WO_3
- Similar C_{1s} line shape over the surface indicating the same chemical environment
- Variations in carbon core level energy related to variations in electrostatic doping
- Energy shift attributed to p-doping induced by WO₃

- Charge transfer between graphene and transition metal oxides demonstrated with MoO_3 [4]
- Electrostatic p-doping of graphene expected on WO_3 [5] with an estimated μ ~0.4eV
- Spatial modulation of graphene's chemical potential investigated using graphene transfer on a patterned WO₃ layer

- Measurements performed using a confocal microscope with 633nm laser
- Observation of graphene related bands on Raman spectra
- Band broadening of D and G bands associated with the presence of amorphous carbon [10]
- Observation of substrate induced effects on G and 2D bands cartography

RAMAN SPECTROSCOPY

Strain and doping separation

2D frequency map

- Cartography over a WO₃ structure with 40µm period
- Separation of strain and doping using G and 2D frequency maps [6]
- Doping modulation of about 0.1eV
- Strain modulation of about 0.2%

Spatial modulation of graphene's chemical potential confirmed using Raman spectroscopy with doping modulation of 0.1eV

CONCLUSION

PERSPECTIVES

- Optical image of fabricated sample
- WO₃ deposition using magnetron sputtering with Ar/O_2 plasma at room temperature
- Layer patterning using UV-lithography and lift-off
- Graphene transfer via PMMA stamp (ACS material Trivial Transfer)
- Demonstration of charge transfer between graphene and WO₃
- Demonstration of graphene's chemical potential spatial modulation using WO_3 patterns on SiO₂

Doping modulation of 0.1eV obtained using simple fabrication process Template readily available for developing novel plasmonic and mid-IR devices

- Evidence of oxygen vacancies in WO₃ [11] attributed to thermal annealing in vacuum
- Room for improvement of charge transfer figures
- Application of the method with other oxides

Nano-XPS W_{4f} core levels measured on WO_3 structures without graphene

CONTACT PERSON

Jérémy Lhuillier

Institut des Nanotechnologies de Lyon, Ecole Centrale de Lyon, 36 avenue Guy de Collongue 69134 Ecully cedex, France.

jeremy.lhuillier@ec-lyon.fr

REFERENCES

[1] Q. Bao and K. P. Loh, ACS Nano, 6 (2012) 3677-3694 [2] R. El-Ganainy et al., Nature Physics, 14 (2018) 11-19 [3] P. A. Huidobro et al., ACS Nano, 10 (2016) 5499-5506 [4] J. Meyer et al., Scientific Reports, 4 (2014) 1-7 [5] M. T. Greiner et al., Nature Materials, 11 (2012) 76-81

[6] J. E. Lee et al., Nature Communications, 3 (2012), 1024 [7] L. a. Falkovsky,, J. Phys. Conf. Ser., 129 (2008), 012004 [8] N. M. R. Peres et al., J. Phys. Cond. Mat., 24 (2012) 245303 [9] J. Avila et al., Scientific Reports, 3 (2013) 2439 [10] J. Hong et al., Scientific Reports, 3 (2013), 2700 [11] G. Hollinger et al., Phys. Rev. Lett., 37 (1976) 1564–1567

This work is funded by the European Research Council H2020 Consolidator Grant GRAPHICS (n°648546)