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Growing perfect graphene on a liquid metal
from self-organized flakes to the single layer
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In order to produce large-area single-layer graphene with the CVD method, the surface of the metal catalyzer must be homogeneous and smooth[1]. The
graphene, as a matter of fact, nucleates on the defects, steps, and impurities. The use of the liquid phase can overcome these limitations and guarantee a
uniform flat substrate[2]. Furthermore, the graphene crystals can float on the surface and self-align[3]. However, the study of such systems required the cooling
at RT and, therefore, the re-solidification of the samples, altering the surface significantly. Furthermore, in this way, information on the dynamic of the growth
was lost entirely. In order to fill this gap, a reactor was projected for the in-situ characterization with the simultaneous combination of x-ray scattering techniques
and optical microscopy[4]. The synchrotron light provides atomic information, while the optical microscope is a perfect tool for monitoring the growth. A large
area of high-quality graphene was created in the laboratory with high reproducibility. The growths were done on liquid copper at 1400K and 200 mbar.
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The synchrotron The optical microscope

The scattering factor of the
carbon is low, while the one
of Cu is high. In order to
detect the graphene
diffraction signal, the high
brilliance source of the
synchrotron is needed.

At 1400K, the liquid
copper and the
graphene emit light
due to the black body
radiation. The
different emissivity
between the two
materials is enough to
discern them. The
intensity of the
graphene scale with
the number of
layers[5].

The initial partial pressure of the
methane precursor influences the
nucleation density. To control the
nucleation, therefore, the CH4
concentration was pulsed for ~1s, and
later decrease to a constant value. If
the carbon concentration is ~10 higher
then the steady-state of the growth (as
shown in figure), many atomically thick
graphene crystals grow and later self-
align and merge. If the pulsing is
avoided, a unique graphene crystal
with a large size, up to 2mm, can be
produced*.

Real-time monitoring allows having a feedback on the status of the growth. The carbon precursor
concertation could be varied anytime to alter the condition. In the example below, cycles of growing
and etching were alternated in order to increase the periodicity of the self-alignment.

*distance between two opposite corners 

The GIXD technique was
used to detect the
diffraction signal of the
graphene lattice. The lattice
parameter was calculated to
2.4603 ± 0.0005 Å. The low
broadening of the Bragg rod
intensity with the qz increase
(lower than the one of free
standing graphene**)
suggests that the graphene
is extremely flat on the
surface of the metal.

The x-ray reflectivity technique allows measuring the electron density perpendicular to the
surface plane. The data were fit with the slab model shown in the figure. In this model, every
layer is an error function, the σ of the function gives the roughness. The parameters and the
results of the fit are:

**The orange lines in {01} are the broadening 
of the signal for the free standing graphene[6] 
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For the first time, the CVD growth of 
graphene on liquid metal was 

characterized in-situ with X-rays and 
optical techniques 

The optical microscope is a cheap 
and powerful tool to control the 

growth

The x-ray techniques prove that the 
grown  graphene is atomically thick 

and it is flat on the liquid 
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From the value of the Gap, it is possible to derive the
Cu-C average distance (Van der Waals gap) of 3.24 Å.
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