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Abstract

Framework : Tight-Binding Hamiltonian  +  Recursive Green Function Method

1)Quantum Transport : 
Generation of disordered systems with 5 impurities :

Dataset :10000 random disordered configurations                Training Set : 8000 configurations
For each configuration :                                                        
 Configuration file : Structural defects information

●   X and Y coordinates                                                            
●   Sublattice information
●   Indices                                                      Test Set : 2000 configurations

 Transmission curve from 0 to 2 eV: Tbtrans/Sisl6                      
                                                                                               

 
 Machine Learning:         Goal : To predict transmission with geometrical information

 
How to infer transmission with geometrical information : The crucial role of Descriptor 

Methods & Workflow

ResultsIntroduction
1) Small system : 10-ZGNR repeated 10 times

2) Big system : 18-ZGNR repeated 52 times

Triangular upper matrix descriptor  : TRIUP
                                                          TRIUP = D2E + DMAT

                                                                                                           List of elements sorted       
                                                                                                                    and arranged gathering      
                                                                                                                         distance to edge
                                                                                                                                     +
                                                                                                                           inter-impurity

                                                                                                     informations               
                                                                                                         

 Model Training :
 Model selection
 Hyperparameters research

Model assessment :
 Mean Absolute error

 Laplacian Kernel ridge Regression (KRR):
 Shown promising results in quantum chemistry3

 For each energy :

                          
           Kernel matrix :

 Neural Network (NN):
 For all energy :
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Distance to edge descriptor : D2E
                                       

                                            List of sorted         
                                                  distances :
                                       The distance is taken as 

                            the closest same      
                                               sublattice edge 

Distance Matrix descriptor  : DMAT4

                List of sorted
                                           inter-impurity
                                              distances
                                                     -
                                             Similar to        
                                         Coulomb Matrix
                                             (see Triup)

Sublattice polarised : TRIUP_SUBPOL
                                                  TRIUP_SUBPOL
                                                                       =
                                                                   TRIUP                  
                                                                       +

                         Sublattice information

                                          
                                             
                                     

Longitudinal/Transversal : TRIUP_dxdy     
  TRIUP_dxdy
            =
Transversal/Longitudinal
      inter-impurity

        information                                             

Conclusions

Figure 1. Mapping of the small ZGNR system  
● Discussions :

● KRR and NN results for the DMAT & D2E suggest that the 
distance to the same sublattice edge is the most relevant 
information to characterize disordered GNRs. 

● Combining D2E & DMAT alongside with additional 
informations such as impurity sublattice dependency or 
transversal/longitudinal inter-impurity distance improves 
the predictive power of NN techniques. 

Figure 3.  Grey curve: Random configuration’s transmission from 
unseen data, the inset showing where the impurities are located.
Black dotted line – purple curve : Pristine transmission – averaged 
transmission.
Red curve: Prediction with D2E alongside with NN.  
Green curve : Prediction with TRIUP_dxdy alongside with NN. 

Figure 4. Mapping of the big ZGNR system  

Figure 2. A – Training set transmission curve distribution. The dashed 
black line accounts for the pristine ribbon’s transmission and the 
purple curve for the average transmission in the training set.
B – MAE vs E for all the descriptors, solid lines display KRR results 
whereas dotted lines stand for NN results.
C – Prediction vs measured transmission for the test set at 2 different 
energies performed with the best descriptor TRIUP_dxdy with NN.

Figure 6. cf Figure 3

An approach based on ML techniques to predict electronic transport in disordered nanostructures in 
complement of the usage of conventional techniques has been presented. By implementing ML techniques 
such as KRR or NN on a generated dataset, it has been shown that one can perform computations that will 
have a moderate cost in comparison of system-scaled conventional techniques.

In both cases, a careful choice of descriptors greatly improves the performance of the ML techniques. We  
have shown that descriptors can be improved by taking into account local sublattice and edge effects, 
which can dominate over impurity separation. The information encoding the distance of the impurities to 
the same sublattice edge in ZGNR revealed to be crucial to describe efficiently quasi-one-dimensional 
system subject to disorder. Our results highlight the ability of ML techniques to capture the complexity of 
disordered nanostructures, and suggest that they can be used to complement conventional techniques to 
better understand a wider array of systems. 

Graphene1 and other 2D materials are very appealing for nanoelectronics, since 
they could play crucial roles in future nanodevices. At the nanoscopic scale, 
geometrical effects can critically affect electronic, magnetic, and transport 
properties2. However, disorder in the lattice structure, derived from either defects 
or external impurities, is extremely difficult to completely eliminate, and can lead 
to substantial changes in the properties of these systems. Therefore, characterising 
the effects of realistic disorders on device behaviour remains crucially important.

Theoretical predictions of large-scale disordered systems can be costly, 
considering the computational resources required to deal with increases in system 
size. Machine learning techniques have been employed in various fields, such as 
consumer recommendation systems, aeronautics and chemistry, to exploit patterns 
in data and make predictions.

Efficient description of disordered systems leads to better prediction for ML 
techniques. Based on the success of the Couloumb Matrix descriptor alongside 
Kernel Ridge regression technique in chemical properties3 and quantum transport 
prediction4, we employ a new descriptor, encoding the distance of the impurities 
from the same sublattice edge5 and its variants, leading to great prediction 
performance. These developed techniques can be used to accurately estimate 
transmission profiles in disordered graphene nanoribbons (GNRs)

● Discussions :
● As the system gets wider, the distance to the same sublattice 

edge remains the most crucial information. 

● Additional informations given as input for either KRR or NN 
techniques do not lead to better performance, emphasizing how 
important D2E is to characterize impurity-based disordered in 
quasi 1-dimensional systems.
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Figure 5. A – cf. Figure 2-A
B – cf. Figure 2-B
C – Prediction vs measured transmission for the test set at 2 different 
energies performed with the best descriptor TRIUP_SUBPOL with NN
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