

GRAPHENE AND 2DM VIRTUAL CONFERENCE & EXPO

Accurate many-body calculation of electronic and optical band gap of bulk hexagonal boron nitride

Miroslav Kolos, František Karlický

Department of Physics, Faculty of Science, University of Ostrava, Czech Republic

Introduction

UNIVERSITY

of ostrava

Recent interest in two-dimensional (2D) materials has re-initiated intensive discussion on bulk layered materials' electronic and optical properties. The debate concerning the band gap of bulk hexagonal boron nitride (h-BN), its nature, and excitonic properties was re-opened by recent experiments^{1,2}. While graphite (and its 2D analog called graphene) is a zero band gap semi-metal, h-BN is a wide gap semiconductor with very high thermal and chemical stability suitable in devices operating under extreme conditions. Experimental estimation of the bulk h-BN band gap has been a long-debated issue, and different experiments have varied. The nature of the band gap was controversial too. Still, this recent experimental studies brought a turning point in this consensus and showed the band gap's nature as indirect and reported very accurate values of the electronic and optical band gaps.

Methods

Experimental lattice constants of a = 2.502 Å and c = 6.617 Å¹ was used. The Vienna *ab initio* simulation package (VASP)³ implementing projector augmented-wave (PAW) method, GW set of PAWs, and cut-off energy $E_{cut} = 500 \text{ eV}$ are used in all calculations (2s1p electrons are explicitly treated). We use GW⁴ approximation with input orbitals from DFT and Perdew,

of Ostrav*i*

Burke and Ernzerhof (PBE) functional⁵ for electronic structure calculations. The break condition for the electronic step is an energy difference of 1 x 10⁻⁶ eV. Excitonic effects are accounted for by the Bethe–Salpeter equation⁶.

Benchmark GW and BSE study of h-BN band gaps

Results

Simple scissor approximation of h-BN band structures

Figure 4. Electronic band structure of h-BN (AA`) from G₀W₀ calculation (black

Figure 1. Convergence of h-BN (AA`) band gaps E_{nan} (indirect, direct in M, optical) and exciton binding energy E_{h}^{exc} $= E_{gap}^{M} - E_{b}^{opt}$ in eV. A) With respect to GW number of bands $N_{_{\rm B}}$ and energy cut-off E cut (indicated in the legend, in eV); B) With respect to number of iteration i in G_iW_0 and G_iW_1 calculations. 12 x 12 x 4 k-grid was used. Green points are experimental values.^{1,2}

Table 1. Comparison of calculated gap values with experimental values.

	$E_{ m gap}^{ m indir}$	$E_{ m gap}^{M/K}$	$E_{ m gap}^{ m opt}$	$E_{\rm b}^{ m exc}$
Calc. AA'	6.08	6.53	5.71	0.82
Calc. AB	6.17	6.39	5.61	0.78
$Exp.^{1,2}$	6.08	6.42	5.69	0.73

Figure 2. Conduction (top) and valence (bottom) bands of h-BN obtained from G_0W_0 calculation as cuts through the plane G–M–K in the first Brillouin zone.

Figure 3. Change in h-BN band gaps E_{gab} (indirect, direct in M, optical) and exciton binding energy $E_{b}^{exc} = E_{gab}^{M} - E_{b}^{opt}$ in eV with respect to c lattice parameter. Two h-BN stacking configurations are considered, AA` and AB.

triangles) and electron-hole contributions to first excitonic peak from BSE calculation (represented by radius of colored circles). Scissor corrected DFT (PBE) band structure, DFT+ Δ (blue lines), seems a very good approximation to the G₀W₀ band structure. Fermi energy is set as zero.

Conclusions

Our carefully converged results reveal h-BN as an indirect material (indirect gap \approx 6.1 eV) with a huge excitonic effect ($\approx 0.8 \text{ eV}$) in agreement with recent revolutionary experiments^{1,2}. Variability of previous theoretical predictions and our convergence tests indicate that many-body methods should be used carefully, and numerical convergence should always be performed. On the other hand, based on benchmark G₀W₀ results, we suggest a computationally cheap scissor corrected DFT approach providing band structure comparable with the G_0W_0 band structure. Time-dependent DFT with a suitable exchangecorrelation kernel can provide absorption spectra that mimic the full G_0W_0 +BSE spectra.

Acknowledgments

This work was supported by Czech Science Foundation (18-25128S) and Institution Development Program of the University of Ostrava (IRP201826). M. K. acknowledges Institutional Research Support Grant from the University of Ostrava (SGS02/PrF/2018) and Support for Science and Research in the Moravian - Silesian Region 2017 (04544/2017/RRC). The calculations were performed at local facility of University of Ostrava (purchased from EU funds, project No. CZ.1.05/2.1.00/19.0388) and IT4Innovations National Supercomputing Center (LM2015070).

References

¹G. Cassabois, P. Valvin and B. Gil, Nat. Photonics, 2016, 10, 262–266; ²T. C. Doan, J. Li, J. Y. Lin and H. X. Jiang, Appl. Phys. Lett., 2016, 109, 122101.; ³G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999); ⁴L. Hedin, Phys. Rev., 1965, 139, A796–A823.; ⁵J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996); ⁶H. Bethe and E. Salpeter, Phys. Rev., 1951, 82, 309–310.

Figure 5. Optical absorption spectra (imaginary part of dielectric function) of h-BN (AA`) using various approximate methods and the reference and the reference G_0W_0 +BSE curve (blue line). The electronhole ladder diagrams in present TD-DFT calculations are approximated by the exact exchange (EEX) and different EEX/GGA ratio is evaluated (and labeled by the EEX part as TD_{FEX} -PBE+ Δ). We achieve surprisingly good approximation with EEX/GGA ratio of 0.3/0.7.

