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Accurate many-body calculation of electronic and optical band gap of bulk hexagonal boron nitride
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Introduction

Recent interest in two-dimensional (2D) materials has re-initiated intensive discussion on bulk
layered materials' electronic and optical properties. The debate concerning the band gap of
bulk hexagonal boron nitride (h-BN), its nature, and excitonic properties was re-opened by
recent experiments®2, While graphite (and its 2D analog called graphene) is a zero band gap
semi-metal, h-BN is a wide gap semiconductor with very high thermal and chemical stability
suitable in devices operating under extreme conditions. Experimental estimation of the bulk h-
BN band gap has been a long-debated issue, and different experiments have varied. The
nature of the band gap was controversial too. Still, this recent experimental studies brought a
turning point in this consensus and showed the band gap's nature as indirect and reported very
accurate values of the electronic and optical band gaps.
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Experimental lattice constants of a = 2.502 A and ¢ = 6.617 A!
was used. The Vienna ab initio simulation package (VASP)?

Implementing projector augmented-wave (PAW) method, GW
set of PAWSs, and cut-off energy E__ = 500 eV are used in all

calculations (2slp electrons are explicitly treated). We use
GW* approximation with input orbitals from DFT and Perdew,
Burke and Ernzerhof (PBE) functional> for electronic structure
calculations. The break condition for the electronic step Is an
energy difference of 1 x 10° eV. Excitonic effects are
accounted for by the Bethe—Salpeter equation®.
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Figure 4. Electronic band structure of h-BN (AA") from G W, calculation (black

%a triangles) and electron-hole contributions to first excitonic peak from BSE

= Figure 2. Conduction (top) and valence calculation (represented by radius of colored circles). Scissor corrected DFT
(bottom) bands of h-BN obtained from (PBE) band structure, DFT+A (blue lines), seems a very good approximation to
G W, calculation as cuts through the the G,W, band structure. Fermi energy Is set as zero.

plane G—-M-K in the first Brillouin zone.
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Figure 1. Convergence of h-BN (AA’) band gaps E .. /. . e A W
(indirect, direct in M, optical) and exciton binding energy E _*¢ 5 B RE gﬂ ' E * | .
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N, and energy cut-off E cut (indicated in the legend, in eV); 6.4 ./././././I ; ././././I/. | | |
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|

calculations. 12 x 12 x 4 k-grid was used. Green points are 6.6 6.65 6.7 6.6 6.65 6.7 60 | | | | GoWo+BSE
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Table 1. Comparison of calculated gap values with experimental values. :@ /\ —— TD%1.PBE+A
— ” ) - Figure 3. Change in h-BN band gaps E_ (indirect, direct in i= A —— TDY2-PBE+A
Egap Egap Egap a8 M, optical) and exciton binding energy E *°=E_ " - E *"in eV 5 40 - {\ ﬁ ——Ep-So PR, T
Calc. AA’ 6.08 6.53 5.71 0.82 with respect to c lattice parameter. Two h-BN stacking = [ —— TDY-3-PBE+A
Calc. AB 6.17 6.39 5.61 0.78 configurations are considered, AA" and AB. S TD0-35_PBELA
Exp. " 6.08 6.42 5.69 0.73 s o0 | D04 PEELA |
; TDY-2-PBE+A
Conclusions —
Our carefully converged results reveal h-BN as an indirect material (indirect gap =6.1 eV) with a huge 0 | | ]
excitonic effect (=0.8 eV) in agreement with recent revolutionary experiments®2. Variability of previous 4 3 6 7 3 9 10
theoretical predictions and our convergence tests indicate that many-body methods should be used E (eV)

: Figure 5. Optical absorption spectra (imaginary part of dielectric
carefully, and numerical convergence should always be performed. On the other hand, based ON | fioion > of HEN (AR taing varoue avprosimats methods and the

benchmark G W, results, we suggest a computationally cheap scissor corrected DFT approach providing | reference and the reference G W,+BSE curve (blue line). The electron-
: : - : hole ladder diagrams in present TD-DFT calculations are approximated
band structure comparable with the G W  band structure. Time-dependent DFT with a suitable exchange- | 1 e exact exchange (EEX) and different EEX/GGA ratio is evaluated

correlation kernel can provide absorption spectra that mimic the full G W +BSE spectra. (and labeled by the EEX part as TD.,-PBE+A). We achieve

surprisingly good approximation with EEX/GGA ratio of 0.3/0.7.
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