

SPIN-ORBIT TORQUES IN MoS₂-GRAPHENE BASED HETEROSTRUCTURES

Regina Galceran¹, Marius V. Costache¹, Juan F. Sierra¹, Subir Parui², Kevin Garello^{2,3}, Frédéric Bonell³, Sergio O. Valenzuela^{1,4}

¹ Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC, Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain

² IMEC, Kapeeldreef 75, 3001 Leuven, Belgium ³ SPINTEC, Univ. Grenoble Alpes, CNRS, CEA, 17 rue des Martyrs 38054 Grenoble, France ⁴Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08070, Spain

October 19-23

I. Motivation **Basics of magnetic** Spin orbit torque (SOT) memories (MRAM) ✓ All-electrical switching

unec

FM

Insulator

FM

(highly efficient) ✓ Transverse geometry

Charge-to-spin conversion

2D materials for SOT?

 Study the charge-to-spin conversion using 2D materials with large spinorbit coupling (MoS₂)

• And interfaced with graphene

III. Spin-torque ferromagnetic resonance (ST-FMR)

Experimental setup for ST-FMR

Amplitude-modulated GHz current is injected into the sample, and an in-plane external magnetic field is applied.

The voltage, measured via a lockin detection (V_{mix}) , is proportional to the change of the

IV. Characterization by ST-FMR

ST-FMR at different frequencies to extract M_{eff} and Gilbert damping α

sample resistance due to anisotropic magnetoresistance (AMR). This allows us to probe the magnetization dynamics.

$$V_{mix} = \frac{\Delta R \ I_{rf}^2 \cos^2 \varphi \sin \varphi}{\alpha (2B_{res} + \mu_0 M_S)} \left[\frac{\partial B_{AD}}{\partial I_{rf}} F_S(B) + \frac{\partial (B_{Oe} + B_{FL})}{\partial I_{rf}} \sqrt{1 + \frac{\mu_0 M_S}{B_{res}}} F_A(B) \right]$$

 V_{mix} can be seen as a sum of symmetric and antisymmetric contributions (V_s and V_A , respectively)

V. ST-FMR angular dependence

From measurements for **different frequencies** (GHz) of RF current (with a fixed angle between the current and the magnetic field) it is possible to extract the effective magnetization (M_{eff}) and the Gilbert damping (α), as follows:

• f vs. B_{res} (Kittel fit) $\rightarrow \mu M_{eff}$ $freq = g \sqrt{(B_{res} + B_0)(B_{res} + B_0 + \mu M_{eff})}$ $\rightarrow M_{eff} \left(\frac{A}{m}\right) = \frac{10^4}{4\pi} \mu M_{eff}(mT)$ • Linewidth (ω) vs f $\rightarrow \alpha$ $\boldsymbol{\omega} = \omega_0 + \frac{2\alpha}{a} \boldsymbol{freq}$

 M_{eff} and α : comparison between stacks, various devices

Comparison for the spectra (at fixed frequency) obtained for the samples with and without graphene spacer:

Angular dependence of ST-FMR for MoS₂/gr-based heterostructures

50 100 150 200 250 300 350

Angle (degree)

Symmetric and antisymmetric voltages (V_s and V_A , respectively) are extracted from ST-FMR curves measured varying the angle between the current and the external magnetic field B.

As an example, results for sample MoS₂/gr/Al/Py are shown, together with fits to $V\cos^2\varphi \sin\varphi$.

Angular dependence of all tested samples show large field-like torque (antisymmetric voltage) and negligible damping-like torque (symmetric voltage).

VI. Characterization by AMR (DC current)

AMR measured by applying a DC current of 50 µA and sweeping the magnetic field B in the sample plane and perpendicular to the current direction.

Difference in the AMR for different samples suggests different magnetic properties of the Py(5nm) layer even though the growth was done simultaneously.

(devices of $25x75\mu m^2$)

Extracted effective magnetizations show a stricking difference between samples with MoS₂ and samples without MoS₂ or with graphene spacer.

Seeing that $M_{eff} = M_s - \frac{2K}{\mu_0 M_s}$, where K is the perpendicular anisotropy energy density, and M_{sat} is supposed to be the same, different magnetic anisotropy could maybe explain these results.

Extracted Gilbert damping parameter is enhanced for the heterostructure containing graphene.

B (mT)

VII. Conclusions

MoS₂ and MoS₂-graphene-based heterostructures were fabricated and measured by spin-torque ferromagnetic resonance (ST-FMR). The insertion of a graphene spacer results in enhanced Gilbert damping parameter. However, differences in extracted effective magnetizations as well as for the measured anisotropic magnetoresistance suggest differences in the stack may affect the growth and therefore the magnetic properties of the Py film. Angular dependence of the ST-FMR shows negligible damping-like torque but large field-like torque. Further studies are required to determine the contributions of Oersted field or of Rashba to the latter.

CONTACT PERSON

Dr. Regina Galceran regina.galceran@icn2.cat

PHYSICS AND ENGINEERING OF NANODEVICES (PEND) GROUP, ICN2

REFERENCES

[1] F. Giustino et al., J. Phys. Mater. (2020) in press https://doi.org/10.1088/2515-7639/abb74e [2] L.A. Benítez et al., Materials 19, 170 (2020) [3] M. Offidani et al. Phys. Rev. Lett, 119 (2017) 196801

ACKNOWLEDGEMENTS

We acknowledge support from the European Union Horizon 2020 research and innovation program under contract 881603 (Graphene Flagship), from MINECO with grant FJCI-2016-28645 and from EU through MSCA-IF project 840588 GRISOTO.

